

$3700 \mathrm{C} / 2$

$$
\mathrm{N}_{18}
$$

THE

D O C T R I N E OF
 C H A N C E S: O R,

A Method of Calculating the Probabilities of Events. in PLay.

THE THIRDEDITION,
Fuller, Clearer, and more Correct than the Former.
By A. DE MOIVRE,
Fellow of the Royal Society, and Member of the Royal Academies of Sciences of Berlin and Paris.

$$
L O N D O N:
$$

Printed for A. Millar, in the Strand. MDCCLVI.

$$
\begin{aligned}
& 2-188+000 \\
& \therefore \Delta D 12 A \text { AR D }
\end{aligned}
$$

To the Right Honourable the

Lord CARPENTER.*

MY L OR D,

 HERE are many People in the World who are prepoffeffed with an Opinion, that the Doctrine of Chances has a Tendency to promote Play; but they foon will be undeceived, if they think fit to look into the general Defign of this Book : in the mean time it will not be improper to inform them, that your Lordfhip is pleafed to efpoufe the Patronage of this fecond Edition; which your ftrict Probity, and the diftinguifhed Character you bear in the World, would not have permitted, were not their Apprehenfions altogether groundlefs.

* This Dedication was prefixed to the 2d Edition.

D E D I C A T I O N.

Your Lordfhip does eafily perceive, that this Doctrine is fo far from encouraging Play, that it is rather a Guard againft it, by fetting in a clear Light, the Advantages and Difadvantages of thofe Games wherein Chance is concerned.

Befides the Endowments of the Mind which you have in common with Thofe whofe natural Talents have been cultivated by the beft Education, you have this particular Happinefs, that you underftand, in an eminent Degree, the Principles of Political Arithmetic, the Nature of our Funds, the National Credit, and its Infuence on public Affairs.

As one Branch of this ufeful Knowledge extends to the Valuation of Annuities founded on the Contingencies of Life, and that I have made it my particular Care to facilitate and improve the Rules I have formerly given on that Subject ; I flatter myfelf with a favourable Acceptance of what is now, with the greateft Deference, fubmitted to your Judgment, by,

> My Lord,

Your Lordbip's
Moft Obedient and

Mof Obliged,

Humble Servant,
A. de Moivre.

PREFACE:

'TIS now about Seven rears, fince I gave a Specimen in the Philofophical Tranfactions, of welsat I now more largely treat of in this Book. The occafion of my then undertakingthis Subject was chiefly owing to the Defire and Encouragement of the Honourable + Francis Robartes Efq; who, upon occafion of a French TraEt, called, L'Analyfe des Jeux de Hazard, zubich bad lately been publighed, was pleafed to propofe to me fome Problems of much greater difficulty than any be had found in that. Book; wbich baving Jolved to bis Satisfaction, be engaged me to metbodize tbore Problems, and to lay down the Rules wobich bad led me to their Solution. After I bad proceeded thus far, it was enjoined me by the Royal Society, to communicate to them rebat I bad difcovered on this Subject: and thereupon it was ordered to be publifhed in the Tranfactions, not fo much as a matter relating to Play, but as containing Some general Speculations not untcorthy to be confidered by the Lovers of Trutb.

I bad not at that time read any thing concerning this Subject, but Mr. Huygen's Book de Ratiociniis in Ludo Alex, and a little Englifo Piece (which was properly a Tranflation of it) done by a very ingenicus Gentleman, webo, tho' capable of carrying the matter a great deal farther, was contented to follcw bis Original; adding only to it the computation of the Advantage of the Setter in the Play called Hazard, and fome fere things more. As for the French Book, I had run it over but curforily, by reafon I bad obferved that the Autbor clieifly infifted on

[^0]the Metbod of Huygens, wibich I was abfolutely refolved to reject, as not feeming to me to be the genuine and natural roay of coming at the Solution of Problems of this kind.

I bad faid in my Specimen, that Mr. Huygens was the firf who. bad publijbed the Rules of this Calculation, intending thereby to do juftice to a Man who bad well deferved of the Public; but robat I then faid was mifinterpreted, as if I had defigned to wrong fome Perfons who bad confidered this matter before him: and a Paffage zoas cited againft me out of Huygen's Preface, in which be faith, Sciendum vero quod jam pridem, inter Preftantiffimos totâ Galliâ Geometras, Calculus hic fuerit agitatus; ne quis indebitam mihi primæ Inventionis gloriam hac in re tribuat. But what follows immediately after, bad it. been minded, might bave cleared me from any Sufpicion of injufice. The words are theefe, Cæterum illi difficillimis quibufque Quaftionibus fe invicem exercere foliti, methodum fuam quifque occultam retinuere, adeo ut a primis elementis hanc materiam evolvere mihi neceffe fuerit. By which it appears, that tho' Mr. Huygens was not the firft who bad applied bimfelf to thofe forts of 2ueftions, be was neverthelefs the firft who bad publifsed Rule's for their Solution; wobich is all that I affirmed.

Such a Tract as this is may be ufeful to feveral evids; the firft of rebich is, that there being in the World feveral inquifitive Perfons, acbo are defirous to know wobat foundation they go upon, woben they engage in Play, wobetber from a motive of Gain, or barely Diverfron, they may, by the belp of this or the like Tract, gratify their curiofity, citber by taking the pains to underfland what is bere Demonfrated, or elfe making ufe of the Conclufions, and taking it for granted that the Demonftrations are right.

Another ufe to be made of this Doctrine of Cbances is, that it. may Serve in Conjunction with the other parts of the Mathematicks, as a fit Introduction to the Art of Reafoning; it being known by experience that notbing can contribute more to the attaining of that Art, than the confideration of a long. Train of Confequences, rigbtly deduced from undoubted Principles, of which this Book affords many Examples. To this may be added, that fome of the Problems about Chance baving a great appearance of Simplicity, the Mind is eaflydraren into a belief, that their Solution may be attained by the meer Strengtb of natural good Senfe; wobich generally proving otberwife, and the Miftakes occafioned thereby being not unfrequent, 'tis prefiumed that a Book of this Kind, which teaches to difinguifh Trutb from what feems fo nearly to refemble it, will be looked upon as a belp to good Reafoning.

Among the feveral Miftakes that are committed about Cbance, one of the moft common and leaf Jufpected, is that which relates to Lotteries. Thous, Juppofing a Lottery woberein the proportion of the Blanks to the Prizes is as five to one; tis very natural to conclude, that therefore five Tickets are requifite for the Cbance of a Prize; and yet it may be proved, Demonfratively, that four Tickets are more than fufficient for that purpofe, which will be confirmed by often repeated Experience. In the like manner, fuppofing a Lottery weberein the proportion of the Blanks to the Prizes is as Thirty-nine to One, (fuch as was the Lottery of 1710) it may be proved, that in twenty eigbt Tickets, a Prize is as likely to be taken as not; which tho' it may feem to contradict the common Notions, is neverthelefs grounded upon infallible Demonfiration.

When the Play of the Royal Oak was in ufe, fome Perfons swbo loft confiderably by it, baid their. Lofles cbiefly occafioned by an Argument of which they could not perceive the Fallacy. The Odds againgt any particular Point of the Ball were One and Thirty to One, which intitled the Adventurers, in cafe they were winners, to bave tbirty two Stakes returned, including their own; inftead of robich they baving but Eight and Twenty, it was very plain that on the fingle account of the dijadvantage of the Play, they loft.one eighth part of all the Money they played for. But the Maffer of the Ball maintained that they bad no reafon to complain; fince be would undertake that any particular point of the Bal! Mould come up in. Two and Treenty Throws; of this be would offer to lay a.Wager, and aEtually laid it when required. The feeming contradiction between the Odds of One and Tbirty to One, and Twenty-two Throws for any Cbance to come up, jo perplexed the Adventurers, that they begun to think the Advantage was on their fide; for which reafon they played on and continued to loje.

The Doctrine of Chances may likewife be a belp, to cure a Kind of Superfition, which bas been of long Alanding in the World, viz. that there is in Play fuch a tbing as Luck, good or bad. I own there are a great many judicious people, who witbout any other Aljifance than that of their oren reafon, are fatisfied, that the Notion of Luck is.meerly Cbimerical; yet I conceive that the ground they bave to look upon it as fuch, may fill be farther inforced from fome of the following Confiderations.

If. by faying that a Man bas-bad good Luck, notbing more was meant than that be bas been generally a Gainer at play, the Expreflion might be allorved as very proper in a fbort way of Jpeaking : But if the Word Good Luck be underftood to fignify a certain predominant quality, fo inberent in a Man, that be miuft win whenever be Plays, or at leaft win oftner than lofe, it may be denied that there is any fuch thing in nature.

The Afierters of Luck are very fure from their own Experience, that at jome times they bave been very Lucky, and that at otber times they bave bad a prodigious Run of ill Luck againft them, which whilft it continucd obliged them to be very cautious in engaging with the Fortunate ; but kow Chance Soould produce thoge extroardinary Events, is what they cannot conceive: They reould be glad, for Inftance, to be Satisfied, bow they could lofe Fifteen Games together at Piquet, if ill Luck bad not Arangely prevailed againft them. But if they will be pleafed to confider the Rules delivered in this Book, they will fee, that though the Odds againft their lofing fo many times together be very great, viz. 32767 to 1, yet that the Poffibility of it is not deftroyed by the greatnefs of the Odds, there being One Cbance in 32768 that it may Io bappen; from robence it folloros, that it was fill poffible to come to pafs roithout the Intervention of what they call Ill Luck.

Befides, This Accident of lo/ing Fifteen times together at Piquet, is no more to be imputed to ill Luck, than the Winning with one fingle Ticket the bigheft Prize, in a Lottery of 32768 Tickets, is to be imputed to good Luck, fince the Cbances in botb Cafes are perfectly equal. But if it be faid that Luck bas been concerned in this latter Cafe, the Anfwer reill be eafy; for let us fuppole Luck not exifting, or at leaft let us fuppofe its Influence to be fufpended, yet the bigheft Prize muft. fall into fome Hand or other, not by Luck, (for by the Hypothefis that bas been laid afide) but from the meer neceflity of its falling fomerobere.

Thofe zoho contend for Luck, may, if they pleafe, alledge otber Cafes at Play, much more unlikely to batpen than the Winning or Lofing fifteen Gaines together, yet fill their Opinion will never receive any Addition of Strength from fuch, Suppofitions: For, by the Rules of Chance, a time may be computed, in which thofe Cafes may as probably bappen as not; nay, not only fo, but a time may be computed in which there may be any proportion of Odds for their fo bappening.

But fuppofing that Gain and Lofs were jo fluctuating, as alveays to be diffributed equally, whercby Luck would certainly be annibilated; would it be reafonable in'this Cafe to attribute the Events of Play to Cbance alone? I tbink, on the contrary, it would be quite otherwife, for then there would be more reafon to Jufpect that jome unaccountable Fatality did rule in it: Thus, if two Perfons play at Crofs and Pile, and Cbance alone. be fuppojed to be concerned in regulating the fall of the Piece, is it probable that there foould be an Equality of Heads and Crolfes? It is Five to Tliree that-in four times there will be an inequality; 'tis Eleven to Five in $12 x, 93$ to 35 in Eight, and about 12 to 1 in a bundred times: Wherefore Chance alone by its Nature confitutes the Inequalities of Play, and there is no need to bave recourfe to Luck to explain them.

Furtber,

PREFACE.

Furtber, the fame Arguments which explode the Notion of Luck, may, on the other fide, be ufeful in fome Cafes to eftablifo a due comparifon between Cbance and Defign: We may imagine Cbance and Defign to be, as it were, in Competition with each other, for the production of fome forts of Events, and may calculate what Probability there is, that thofe Events bould be ratber owing to one than to the other. To give a familiar Inftance of this, Let us fuppofe that two Packs of PiquetCards being jent for, it 乃bould be perceived that there is, from Top to Bottom, the jame Difpofition of the Cards in both Packs; let us likewife fuppofe that, fome doubt arifing about this Difpofition of the Cards, it Jould be queftioned wobetber it ought to be attributed to Cbance, or to the Maker's Defign : In this Caje the Doctrine of Combinations decides the Queftion; fince it may be proved by its Rules, that there are the Odds of above 263 I 30830000 Millions of Millions of Millions of Millions to One, that the Cardswere defignedly fet in the Order in wobich they were found.

From this laft Confideration we may learn, in may Cajes, bow to diftinguifh the Events which are the effect of Cbance, from thofe wbich are produced by Defign: The very Doctrine that finds Cbance wobere it really is, being able to prove by a gradual Increaje of Probability, till it arrive at Demonftration, that wobere Uniformity, Order and ConRancy refide, there alfo refide Cboice and Defign.

Laftly, One of the principal U/es to which this Doctrine of Chances may be applied, is the difcovering of fome Trutbs, which cannot fail of pleafing the Mind, by their Generality and Simplicity; the adnirable Connexion of its Confequences will increafe the Pleafure of the Difcovery; and the feeming Paradoxes wherewith it abounds, will afford very great matter of Surprize and Entertainment to the Inquifitive. A very remarkable Inftance of this nature may be Seen in the prodigious Advantage which the repetition of Odds will amount to; Thus, Suppofing I play with an Adverfary who allows me the Odds of 43 to 40, and agrees with me to play till 100 Stakes are won or loft on either jide, on condition that I give bim an Equivalent for the Gain I am intitled to by the Advantage of my Odds; the थueffion is, what I am to give kim, on fuppofing we play a Guinea a Stake: The Anfwer is 99 Guineas and above 18 Sbillings *, which will feem almoft incredible, confidering the fmallne/s of the Odds of 43 to 40 . Now let the Odds be in any Proportion given, and let the Number of Stakes be played for be never fo great, yet one general Conclufion will include all the polible Cafes, and the application of it to Numbers may be wrought in lefs than a Minute's time.

[^1]I bave explained, in my Introduction to the following Treatife, the chief Rules on wobich the robole Art of Chances depends; I bave done it in the plaineft manner ibat I could think of, to the end it might be (as much as fo(fible) of general U/e. I flatter my Jelf that thofe who are acquainted with Arithmetical Operations, will, by the belp of the Introduction alone, be able to jolve a great V ariety of Quefions depending, on Chance: I wifh, for the jake of jome Gentlemen who bave been pleafed to fubfcribe to the printing of my Book, that I could every where bave been as plain as in the Introduction; but this zoas hardly practicable, the Invention of the greateft part of the Rules being intirely owing to Algebra; yet I have, as much as poflible, endeavoured to deduce from the Algebraical Calculation feveral praitical Rules, the Truth of robich may be depended upon, and which may be very ujeful to thoje zoho bave contented themfelves to learn only common Aritbmetick.

On this occafion, I muft take notice to fuch of my Readers as are weell verfed in Vulgar Aritbmetick, that it would not be difficult for them to make themfelves Mafers, not only of all the practical Rules in this Book, but alfo of more ufeful Difcoveries, if they would take the fmall Pains of being acquainted with the bare Notation of Algebra, wobich might be done in the bundredth part of the Time that is Jpent in learning to write Short-hand.

One of the principal Methods I bave made ufe of in the following Treatife, bas been the Doctrine of Combinations, taken in a Senfe fomewbat more extenfive, than as it is commonly underfood. The Notion of Combinations being fo well fitted to the Calculation of Cbance, that it naturally enters the Mind webenever an Attempt is made towards the Solution of any Problem of that kind. It was this that led me in courfe to the Confideration of the Degrees of Skill in the Adventurers at Play, and I bave made ufe of it in moft parts of this Book, as one of the Data that enter the Queftion; it being fo far from perplexing the Calculation, that on the contrary it is rather a Help and an Ornament to it: It is true, that this Degree of Skill is not to be knoren any other way than from Obfervation; but if the fame Obfervation conftantly recur, 'tis ftrongly to be prefuned that a near Eftimation of it may be made: However, to make the Calculation more precife, and. to avoid caufing any needlefs Scruples to thofe who love Geometrical Exactnefs, it will be cafy, in the room of the zeord Skill, to fubfitute a Greater or Lefs Proportion of Chances among the Adventurers, fo as. each of them may be faid to bave a certain Number of Cbances to win one fingle Game.

The general Theorem invented by Sir Ifaac Newton, for raifing a Bino mial to any Pawer given, facilitates infinitely the Metbod of Combinations, reprefenting

PREFACE.

reprefenting in one Vievo the Combination of all the Cbances, that can bappen in any given Number of Times. 'Tis by the belp of that Tbeoren, joined with jome otber Metbods, that I bave been able to find practical Rules for the folving a great Variety of difficult शuefions, and to reduce the Difficulty to a fingle Arithmetical Multiplication, whereof feveral Inftances may be feen in the 46 th Page of tbis Book.

Another Metbod I bave made ufe of, is that of Infinite Series, which in many cajes will folve the Problems of Cbance more naturally than Combinations. To give the Reader a Notion of this, we may fuppofe two Men at Play throwing a Die, each in their Turns, and that he is to be repuited the Winner wobo Joall firft tbrow an Ace: It is plain, that the Solution of tbis Problem cannot fo properly be reduced to Combinations, which ferve cbiefly to determine the proportion of Cbances between the Gamefters, without any regard to the Priority of Play. 'Tis convenient therefore to bave recourfe to fome other Metbod, fuch as the following: Let us fuppofe that the firft Man, being willing to compound with bis Adverfary for the Advantage be is intitled to from bis firgt Throw, fousld afk bim what Confideration be would allow to yield it to bian; it may naturally be fuppofed that the Anfwer would be one Sixth. part of the Stake, there being but Five to One againft bim, and that this Allowance would be thougbt a juft Equivalent for yielding bis Throw. Let us likervife fuppofe the jecond Man to require in bis Turn to bave one fixth part of the remaining Stake for the Confideration of bis Throw; which being granted, and the firft Man's Right returning in courfe, be may claim again one fixth part of the Remainder, and fo on alternately, till the robole Stake be exbaufted: But this not being to be done till after an infinite number of Shares be thus taken on both Sides, it belongs to the Metbod of Infinite Series to afign to each Man what proportion of the Stake be ougbt to take at firft, fo as to anfwer exactly that fictitious Divifion of the Stake in infinitum; by means of which it will be found, that the Stake ought to be divided between the contending Parties into treo parts, refpectively proportional to the two Numbers 6 and 5. By the like Metbod it would be found that if there were Three or more Adventurers playing on the conditions above deforibed, cach Man, according to the Situation be is in with relpect to Priority of Play, might take as bis due fuch part of the Stake, as is expreffible by the correfponding Term of the proportion of 6 to 5 , continued to jo many Terms as there are Gamefters; which in the cafe of Three Gameflers, for Inftance, would be the Numbers 6, 5, and $4 \frac{1}{6}$, or their Proportionals 36,30 , and 25 .

Anotber Advantage of the Metliod of Infinite Series is, that every Term of the Series includes fome particular Circumftance wherein the

Gamefters may be found, webich the other Metbods do not; and that a few of its Steps are Jufficient to difcover the Law of its Proce/s. The only Difficulty which attends tbis Metbod, being that of fumming up fo many of its Terms as are requifte for the Solution of the Problem. propofed: But it will be found by Experience, that in the Series refulting from the Confideration of moft Cafes relating to Cbance, the Terms of it will either confitute a Geometric Progrefion, which by the known Methods is eafily fummable; or elfe fome otber fort of Progrefion, wobofe nature conffits in this, that every Term of it bas to a determinate number of the preceding Terms, each being taken in order, fome conftant relation; in which cafe I bave contrived fome eafy Theorems, not only for finding the Law of that Relation, but allo for finding the Sums required; as may be jeen in Several places of this Book, but particularly from page 220 to page 230.

A Third Advantage of the Method of Infinite Series is, that the Solutions derived from it bave a certain Generality and Elegance, which fcarce any otber Metbod can attain to; thoje Metbods being always perplexed with various unknown 2 uantities, and the Solutions obtained by them terminating commonly in particular Cafes.

There are otber Sorts of Series, which tho' not properly infinite, yet are called Series, from the Regularity of the Terms whereof they are compoled; thofe Terms following one another with a certain uniformity, which is always to be defined. Of this nature is the Theorem given by Sir Ifaac Newton, in the fifth Lemma of the third Book of bis Principles, for drawing a Curve through any given number of Points; of which the Demonflration, as well as of other things belonging to the fame Subject, may be deduced from the fir \uparrow Propofition of bis Methodus Differentialis, printed with fome other of bis Tracts, by the care of my Intimate Friend, and very אkilful Mathematician, Mr. W. Jones. The abovementioned Theorem being very ufeful in fumming up any number of Terms wobofe laft Differences are equal, (fuch as are the Numbers called. Triangular, Pyramidal, \&c. thie Squares, the Cubes, or other Porvers of Numbers in Aritbmetic Progreffion) I bave fieron in many places of: this Book bow it might be applicable to the fe Cajes.

After baving dwelt fome time upon various Quefions depending on the general Principle of Combinations, as laid doven in my Introduction, and upon fome otbers depending on the Metbod of Infinite Series, I proceed to treat of the Method of Combinations properly fo called, which I feew to be eafily deducible from that more general Principle whicb. bad been before explained: Where it may be objerved, that although the Cafes it is applied to are particular, yet the Way of Reajoning, and the Confequences derived from it, are general; that Method of:

Arguing about generals by particular Examples, being in my opinion very convenient for eafing the Reader's Imagination.

Having explained the common Rules of Combinations, and given a Theorem wobich may be of ufe for the Solution of fome Problems relating to that Subject, I lay down a newo Theorem, which is properly a contraction of the former, whereby feveral Quefions of Chance are refolved with woonderful eafe, tho' the Solution might Jeem at firft figbt to be of infuperable difficulty.

It is by the Help of that Theorem fo contracted, that I bave been able to give a compleat Solution of the Problems of Pharaon and Baffette, whicb was never done before me: I own that fome great Matbematicians bad already taken the pains of calculating the advantage of the Banker, in any circumflance eitber of Cards remaining in bis Hands, or of any number of times that the Card of the Ponte is contained in the Stock: But fill the curiofty of the Inquifitive remained unfatisfed; The Chief Quefion, and by much the mof difficult, concerning Pharaon or Baffette, being, What it is that the Banker gets per Cent. of all the Money adventured at thofe Games? rubich now I can certainly anfiwer is very near Three per Cent. at Pharaon, and tbree fourths per Cent. at Baffette, as may be feen in my 33 d Problem, where the precije Advantage is calculated.
In the $35^{\text {th }}$ and 36 th Problems, I explain a new fort of Algebra, wobereby Jome 2uefions relating to Combinations are jolved by fo eafy a Procefs, that their Solution is made in fome meafure an immediate conSequence of the Metbod of Notation. I will not pretend to fay that tbis new Algebra is abolutely neceflary to the Solving of thofe 2 2effions wwhich I make to depend on it, jince it appears that Mr. Monmort, Autbor of the Analyfe des Jeux de Hazard, and Mr. Nicholas Bernoulli bave folved, by another Metbod, many of the cafes therein propofed: But I bope I haall not be thought guilty of too much Confidence, if I afure the Reader, that the Metbod I bave followed has a degree of Simplicity, wiot to fay of Generality, wwich will bardly be attained by any other Steps than by tbofe I bave taken.

The 39th Problem, propofed to me, amongf fome otbers, by the Honourable Mr. Francis Robartes, I bad folved in my tract De menfura Sortis; It relates, as well as the 35 th and $36 t$ h, to the Method of Combinations, as is made to depend on the fame Principle. When I began for the firf time to attempt its Solution, I bad nothing elfe to guide me but the common Rules of Combinations, fuch as they bad been delivered by Dr. Wallis and others; zobich wben I endeavoured to apply, I weas furprized to find that my Calculation fwelled by degrees to an intolerable Bulk:: For this reafon I was forced to turn my Views another way, and to try: wobether
whetber the Solution I was feeking for might not be deduced from fome eafier confiderations; zebereupon I bappily fell upon the Metbod I bave been mentioning, rebich as it led me to a very great Simplicity in the Solution, fo Ilook upon it to be an Improvement made to the Method of Combinations.

The 40 th Sroblem is the reverfe of the preceding; It contains a very remarkable Metbod of Solution, the Artifice of retbich confifls in changing an Aritbmetic I'rogreflion of Numbers into a Geometric one; this being always to be done raben the Numbers are large, and their Intervals finall. I freely acknowledge that I bave been indebted long ago for this ufeful Idea, to my much reffected Friend, That Excellent Matbematician Dr. Halley, Secretary to the Royal Society, whom I bave feen practife the tbing on anotber occafion: For this and otber Inflructive Notions readily imfarted to me, during an uninterrupted FriendjJip of five and Twenty years, I return bim my very bearty Tbanks.

The 44 th and 45 th Problems, baving in them a Mixture of the two Metbods of Combinations and Infinite Series, may be profofed for a pattern of Solution, in fome of the moft difficult cafes that may occur in the Subject of Cbance, and on this occafion I muft do that Juftice to Mr. Nicholas Bernoulli, to aron be bad fent me the Solution of thofe Problems before mine was Publifhed; which I bad no fooner received, but I communicated it to the Royal Society, and reprefented it as a Performance bigbly to be commended: Whereupon the Society order'd that bis Solution flould be Printed; wbich was accordingly done fome time after in the Philofophical Tranfactions, Numb. 341, wobere mine was alfo inferted.

The Problems rebich follow relate chiefly to the Duration of Play, or to the Metbod of determining rubat number of Games may probably be played out by two Adverfaries, before a certain number of Stakes agreed on between them be won or lof on eitber fide. This Subjeet affording a very great Variety of Curious Quefions, of which every one bas a degree of Difficulty peculiar to it felf, I tbought it neceffary to divide it into feveral diffinet Problems, and to illuftrate their Solution with proper Examples.

Tho' thefe Quefions may at firft fight feem to bave a very great degree of difficulty', yet I bave fome reafon to believe, that the Steps I bave taken to come at their Solution, will eafily be followed by thofe who bave a competent אkill in Algebra, and that the chief Metbod of procceding thercin woill be underftood by thofe who are barely acquainted with the Elements of tbat Art.

When I firlt began to attempt the general Solution of the Froblem con cerning the Duration of Play, there was notbing extant that could give me any light into that Subject; for altbo' Mr. de Monmort, in the firft Edition of bis Book, gives the Solution of tbis Problem, as limited to three Stakes to be won or lijt, and farther limited by the Suppofition of an E -
quality of Skill between the Adventurers; yet be baving given no Demonftration of bis Solution, and the Demonftration when difcovered being of very little ufe towards obtaining the general Solution of the Problem, I was forced to try what my own Enquiry would lead me to which baving been attended with Succefs, the refult of what I found was aftervards publifhed in my Specimen before mentioned.

All the Problems which in my Specimen related to the Duration of Play, bave been kept entire in the following Treatife; but the Metbod of Solution bas received fome Improvements by the new Difcoveries I bave made concerning the Nature of thofe Series which refult from the Confideration of the Subject; bowever, the Principles of that Metbod baving been laid down in my Specimen, I bad nothing now to do, but to draw the Confequences that were naturally deducible from them.

[^2]
ADVERTISEMENT.

THE Author of this Work, by the failure of his Eye-fight in extreme old age, was obliged to entruft the Care of a new Edition of it to one of his Friends; to whom he gave a Copy of the former, with fome marginal Corrections and Additions, in his own hand writing. To thefe the Editor has added a few more, where they were thought neceffary: and has difpofed the whole in better Order; by reftoring to their proper places fome things that had been accidentally mi/placed, and by putting all the Problems concerning Annuities. together; as they ftand in the late improved Edition of the Treatife on that Subject. An Appendix of feveral ufeful Articles is likewife fubjoined: the whole according to a Plan concerted with the Author, above a year before his death.

$\begin{array}{llllll}E & R & R & A & T & A\end{array}$

Pag. 10 1. ult. for 445 read 455 . p. 27 1. 4, for $10^{\text {th }}$ read $12^{\text {th }}$ Article. p. 291.30 , for $x y$ read $x x$. p. 45 l. ult. for $\frac{1}{9} z^{3}$ read $\frac{x}{6} z^{x}$. p. 68. 1. 6, for $d^{j}+d^{5}$ read $d^{4}+d^{3}$. p. 1161.26 , for Art. $3^{\text {d }}$ read Art. $4^{\text {th. }}$. p. 179 1. 8 from the bottom, for XV. Prob. read Corol. to Prob. 19. P. 1811. 1, for $18^{\text {th }}$ read 19 ${ }^{\text {th. }}$. p. 1871.25 , for 38 read 28. p. 192 1. 7. from bottom, for $a a b$ and $b b a$ read $a b a$ and $b a b$. p. 205 l 1. 7, for $\frac{a^{p}}{+t^{p}}$ read $\frac{b^{p}}{c+b^{p}}$. p. 238.1. 16, for $A F G z$ read $A F z$.

T HE
 D O CTRINE

$$
\mathrm{O} \mathrm{~F}
$$

C H A N C E S.

The INTRODUCTION.

HE Probability of an Event is greater or lefs, according to the number of Chances by which it may happen, compared with the whole number of Chances by which it may either happen or fail.
2. Wherefore, if we conftitute a Fraction whereof the Numerator be the number of Chances whereby an Event may happen, and the Denominator the number of all the Chances whereby it may either happen or fail, that Fraction will be a proper defignation of the Pro- bability of happening. Thus if an Event has 3 Chances to happen, and 2 to fail, the Fraction $\frac{3}{5}$ will fitly reprefent the Probability of its happening, and may be taken to be the meafure of it.

The fane thing may be faid of the Probability of failing, which will likewife be meafured by a Fraction whofe Numerator is the number of Chances whereby it may fail, and the Denominator the whole number of Chances, both for its happening and failing; thus the Probability of the failing of that Event which has 2 Chances to fail and 3 to happen will be meafured by the Fraction $\frac{2}{5}$.
3. The Fractions which reprefent the Probabilities of happening and failing, being added together, their Sum will always, be equal to Unity, fince the Sum of their Numerators will be equal to their common Denominator: now it being a certainty that an Event will either happen or fail, it follows that Certainty, which may be conceived under the notion of an infinitely great degree of Probability, is fitly reprefented by Unity.

There things will eafily be apprehended, if it be confidered, that the word Probability includes a double Idea; firft, of the number of Chances whereby an Event may happen; fecondly, of the number of Chances whereby it may either happen or fail.

If I fay that I have three Chances to win any Sum of Money, it is impoffible from that bare affertion to judge whether I am like to obtain it ; but if I add that the number of Chances either to obtain it, or to mifs it, is five in all, from hence will enfue a comparifon between the Chances that favour me, and the whole number of Chances that are for or againft me, whereby a true judgment will be formed of my Probability of fuccefs : from whence it neceffarily follows, that it is the comparative magnitude of the number of Chances to happen, in refpect to the whole number of Chances either to happen or to fail, which is the true meafure of Probability.
4. If upon the happening of an Event, I be intitled to a Sum of Money, my Expectation of obtaining that Sum has a determinate value before the happening of the Event.

Thus, if I am to have 10 L . in cafe of the happening of an Event which has an equal Probability of happening and failing, my Expectation before the happening of the Event is worth $5^{L .}:$ for I am precifely in the fame circumftances as he who at an equal Play ventures 5^{L}. either to have 10 , or to lofe his 5 . Now he who ventures 5^{L}. at an equal Play, is poffeffor of 5^{L}. before the decifion of the Play;

Play ; therefore my Expectation in the cafe above-mentioned muft alfo be worth 5^{L}.
5. In all cafes, the Expectation of obtaining any Sum is eftimated by multiplying the value of the Sum expected by the Fraction which reprefents the Probability of obtaining it.

Thus, if I have 3 Chances in 5 to obtain 100 L . I fay that the prefent value of my Expectation is the product of $100 L$. by the fraction $\frac{3}{5}$, and confequently that my expectation is worth 60 L .

For fuppofing that an Event may equally happen to any one of 5 different Perfons, and that the Perfon to whom it happens fhould in confequence of it obtain the Sum of $100 L$. it is plain that the right which each of them in particular has upon the Sum expected is $\frac{1}{5}$ of $100{ }^{L}$. which right is founded in this, that if the five Perfons concerned in the happening of the Event, fhould agree not to fand the Chance of it, but to divide the Sum expected aniong themfelves, then each of them muft have $\frac{1}{5}$ of 100 L . for his pretenfion. Now whether they agree to divide that fum equally among themfelves, or rather chufe to fland the Chance of the Event, no one has thereby any advantage or difadvantage, fince they are all upon an equal foot, and confequently each Perfon's expectation is worth $\frac{1}{5}$ of $100 L$. Let us fuppofe farther, that two of the five Perfons concerned in the happening of the Event, fhould be willing to refign their Chance to one of the other three; then the Perfon to whom thofe two Chances are thus refigned has now three Chances that favour him, and confequently has now a right triple of that which he had before, and therefore his expectation is now worth $\frac{3}{5}$ of 100 L .
Now if we confider that the fraction $\frac{3}{5}$ expreffes the Probability of obtaining the Sum of 100 L , and that $\frac{3}{5}$ of 100 , is the fame thing as $\frac{3}{5}$ multiplied by 100, we muft naturally fall into this conclufion, which has been laid down as a principle, that the value of the Expectation of any Sum, is determined by multiplying the Sum expected by the Probability of, obtaining it.
This manner of reafoning, tho' deduced from a particular cafe, will eafily be perceived to be general, and applicable to any other eafe.

Corollary.

From what precedes, it neceffarily follows that if the Value of an Expectation be given, as alfo the Value of the thing expected, then dividing the firft value by the fecond, the quotient will exprefs the Probability of obtaining the Sum expected: thus if I have an Expectation worth 60^{L}. and that the Sum which I may obtain be worth $100 I$. the Probability of obtaining it will be expreft by the quotient of 60 divided by 100 , that is by the fraction $\frac{60}{100}$ or $\frac{3}{5}$:
6. The Rifk of lofing any Sum is the reverfe of Expectation; and the true meafure of it is, the product of the Sum adventured multiplied by the Probability of the Lofs.
7. Advantage or Difadvantage in Play, refults from the combination of the feveral Expectations of the Gamefters, and of their feveral Rifks.

Thus fuppofing that A and B play together, that A has depofited 5^{L}. and $B 3^{L}$. that the number of Chances which A has to win is 4 , and the number of Chances which B has to win is 2 , and that it were required in this circumftance to determine the advantage or difadvantage of the Adventurers, we may reafon in this manner: Since the whole Sum depofited is 8, and that the Probability which A has of getting it is $\frac{4}{6}$, it follows that the Expectation of A upon the whole Sum depofited is $8 \times \frac{4}{6}=5 \frac{1}{3}$, and for the fame reafon the Expectation of B upon that whole Sum depofited is $8 \times \frac{2}{6}=2 \frac{2}{3}$.

Now, if from the refpective Expectations which the Adventurers have upon the whole fum depofited, be fubtracted the particular Sums which they depofit, that is their own Stakes, there will remain the Advantage or Difadvantage of either, according as the difference is pofitive or negative.

And therefore if from $5 \frac{1}{3}$, which is the Expectation of A upon the whole Sum depofited, 5 which is his own Stake, be fubtracted, there will remain $\frac{1}{3}$ for his advantage; likewife if from $2 \frac{2}{3}$ which is the Expectation of $B, 3$ which is his own Stake be fubtracted, there will remain $-\frac{1}{3}$, which being negative fhews that his Difadvantage is $\frac{1}{2}$.

Thefe conclufions may alfo be derived from another confideration; for if from the Expectation which either Adventurer has upon the

Sum depofited by his Adverfary, be fubtracted the Rifk of what he himfelf depofits, there will likewife remain his Advantage or Difadvantage, according as the difference is pofitive or negative.

Thus in the preceding cafe, the Stake of B being 3, and the Probability which A has of winning it, being $\frac{4}{6}$, the Expectation of A upon that Stake is $3 \times \frac{4}{0}=2$; moreover the Stake of A being 5 , and the Probability of lofing it, being $-\frac{2}{6}$, his Rifk ought to be eftimated by $5 \times \frac{2}{6}=1 \frac{2}{3}$; wherefore, if from the Expectation 2, the Rifk $1 \frac{2}{3}$ be fubtracted, there will remain $\frac{1}{3}$ as before for the Advantage of A : and by the fame way of proceeding, the Difadvantage of B will be found to be $\frac{1}{3}$.

It is very carefully to be obferved, that what is here called Advantage or Difadvantage, and which may properly be called Gain or Lofs, is always eftimated before the Event is come to pafs; and altho' it be not cuftomary to call that Gain or Lofs which is to be derived from an Event not yet determined, neverthelefs in the Doctrine of Chances, that appellation is equivalent to what in common difcourfe is called Gain or Lofs.

For in the fame manner as he who ventures a Guinea in an equal Game may, before the determination of the Play, be faid to be poffeffor of that Guinea, and may, in confideration of that Sum refign his place to another; fo he may be faid to be a Gainer or Lofer, who would get fome Profit, or fuffer fome Lofs, if he would fell his Expectation upon equitable terms, and fecure his own Stake for a Sum equal to the Rifk of lofing it.
8. If the obtaining of any Sum requires the happening of feveral Events that are independent on each other, then the Value of the Expectation of that Sum is found by multiplying together the feveral Probabilities of happening, and again multiplying the product by the Value of the Sum expected.

Thus fuppofing that in order to obtain 90^{L} two Events muft happen; the firft whereof has 3 Chances to happen, and 2 to fail, the fecond has 4 Chances to happen, and 5 to fail, and I would know the value of that Expectation; I fay,

The Probability of the firft's happening is $\frac{3}{5}$, the Probability of the fecond's happening is $\frac{4}{9}$; now multiplying thefe two Probabilities together, the product will be $\frac{12}{45}$ or $\frac{4}{15}$; and this product being again.
again multiplied by 90 , the new product will be $\frac{360}{15}$ or 24 , therefore that Expectation is worth 24^{L}.
The Demonftration of this will be very eafy, if it be confider'd, that fuppofing the firt Event had happened, then that Expectation depending now intirely upon the fecond, would, before the determination of the fecond, be found to be exactly worth $\frac{4}{9} \times 9^{\circ}$. or 40 . (by Art. $5^{\text {th }}$) We may therefore look upon the happening of the firft, as a condition of obtaining an Expectation worth $40{ }^{i}$. but the Probability of the firft's happening has been fuppofed $\frac{3}{5}$, wherefure the Expectation fought for is to be eftimated by $\frac{3}{5} \times 40$, or by $\frac{3}{5} \times \frac{4}{9} \times 90$; that is, by the product of the two Probabilities of happening multiplied by the Sum expected.

And likewife, if an Expectation depends on the happening of one Event, and the failing of another, then its Value will be the product of the Probability of the firt's happening by the Probability of the fecond's failing, and of that again by the Value of the Sum expected.

And again, if an Expectation depends on the failing of two Events, the Rule will be the fame; for that Expectation will be found by multiplying together the two Probabilities of failing, and multiplying that again by the Value of the Sum expected.

And the fame Rule is applicable to the happening or failing of as many Events as may be affigned.

Corollary.

If we make abftraction of the Value of the Sum to be obtained, the bare Probability of obtaining it, will be the product of the feveral Probabilities of happening, which evidently appears from this $8^{\text {th }}$ Art. and from the Corollary to the $5^{\text {th }}$.

Hitherto, I have confined myfelf to the confideration of Events independent; but for fear that, in what is to be faid afterwards, the terms independent or dependent might occafion fome obfcurity, it will be neceffary, before I proceed any farther, to fettle intirely the notion of thofe terms.

Two Events are independent, when they have no connexion one with the other, and that the happening of one neither forwards nor obfructs the happening of the other.

Two Events are dependent, when they are fo connected together as that the Probability of either's happening is altered by the happening of the other.

In order to illuftrate this, it will not be amifs to propofe the two following eafy Problems.
1°. Suppofe there is a heap of 1_{3} Cards of one colour, and another heap of 13 Cards of another colour, what is the Probability that taking a Card at a venture out of each heap, I thall take the two Aces?

The Probability of taking the Ace out of the firt heap is $\frac{1}{13}$: now it being very plain that the taking or not taking the Ace out of the firft heap has no influence in the taking or not taking the Ace out of the fecond; it follows, that fuppofing that Ace taken out, the Probability of taking the Ace out of the fecond will alfo be $\frac{1}{13}$; and therefore, thofe two Events being independent, the Probability of their both happening will be $\frac{1}{13} \times \frac{1}{13}=\frac{1}{169}$.
2°. Suppofe that out of one fingle heap of ${ }_{13}$ Cards of one colour, it fhould be undertaken to take out the Ace in the firft place, and then the Deux, and that it were required to affign the Probability of doing it; we are to confider that altho' the Probability of the Ace's being in the firt place be $\frac{1}{13}$, and that the Probability of the Deux's being in the fecond place, would alfo be $\frac{1}{13}$, if that fecond Event were confidered in itfelf without any relation to the firf ; yet that the Ace being fuppofed as taken out at firft, there will remain but 12 Cards in the heap, and therefore that upon the fuppofition of the Ace being taken out at firft, the Probability of the Deux's being next taken will be alter'd, and become $\frac{1}{12}$; and therefore, we may conclude that thofe two Events are dependent, and that the Probability of their both happening will be $\frac{1}{13} \times \frac{1}{12}=\frac{1}{156}$.
From whence it may be inferred, that the Probability of the happening of two Events dependent, is the product of the Probability of the happening of one of them, by the Probability which the other will have of happening, when the firft is confidered as having happened; and the fame Rule will extend to the happening of as many Events as may be affigned.
9. But-to determine, in the eafieft manner poffible, the Probability of the happening of feveral Events dependent, it will be convenient to diftinguifh by thought the order of thofe Events, and to fuppofe one of them to be the firft, another to be the fecond, and fo on: which being done, the Probability of the happening of the firf may
be looked upon as independent, the Probability of the happening of the fecond, is to be determined from the fuppofition of the firft's having happened, the Probability of the third's happening, is to be determined from the fuppofition of the firft and fecond having happened, and fo on: then the Probability of the happening of them all will be the product of the Multiplication of the feveral Probabilities which have been determined in the manner prefcribed.

We had feen before how to determine the Probability of the happening or failing of as many Events independent as may be affigned; we have feen likewife in the preceding Article how to determine the Probability of the happening of as many Events dependent as may be affigned: but in the cafe of Events dependent, how to determine the Probability of the happening of fome of them, and at the fame time the Probability of the failing of fome others, is a difquifition of a greater degree of difficulty; which for that reafon will be more conveniently transferred to another place.
10. If I have feveral Expectations upon feveral Sums, it is very evident that my Expectation upon the whole is the Sum of the Expectations I have upon the particulars.

Thus fuppofe two Events fuch, that the firft may have ${ }_{3}$ Chances to happen and 2 to fail, and the fecond 4 Chances to happen and 5 to fail, and that I be intitled to 90^{L}. in cafe the firft happens, and to another like Sum of 90^{L}. in cafe the fecond happens alfo, and that I would know the Value of my Expectation upon the whole: I fay,

The Sum expected in the firft cafe being 90^{L}. and the Probability of obtaining it being $\frac{3}{5}$, it follows that my Expectation on that account, is worth $90 \times \frac{3}{5}=54$; and again the Sum expected in the fecond cafe being 9°, and the Probability of obtaining it being $\frac{4}{9}$, it follows that my Expectation of that fecond Sum is worth $90 \times \frac{4}{9}=40$; and therefore my Expectation upon the whole is worth $54^{L .}+40^{L .}=94^{L}$.

But if I am to have 90^{L}. once for all for the happening of one or the other of the two afore-mentioned Events, the method of procefs in determining the value of my Expectation will be fomewhat altered : for altho' my Expectation of the firf Event be worth 54^{L}. as it was in the preceding Example, yet I confider that my Expectation of the fecond will ceafe upon the happening of the firt, and that therefore this Expectation takes place only in cafe the firt does hapfen to fail. Now the Probability of the firft's failing is $\frac{2}{5}$; and .

The Doctrine of Chances.

fuppofing it has failed, then my Expectation will be 40 ; wherefore $\frac{2}{5}$ being the meafure of the Probability of my obtaining an Expectation worth 40^{L}., it follows that this Expectation (to eftimate it before the time of the firft's being determined) will be worth $40 \times \frac{2}{5}$ $=16$, and therefore my Expectation upon the whole is worth $54^{L .}+16^{L}=70^{L}$.

If that which was called the fecond Event be now confidered as the firft, and that which was called the firft be now confidered as the fecond, the conclufion will be the fame as before.

In order to make the preceding Rules familiar, it will be convenient to apply them to the Solution of fome eafy cafes, fuch as are the following.

CASE It.

To find the Probability of throwing an Ace in two throws of one Die:

Solution.

The Probability of throwing an Ace the firft time is $\frac{1}{6}$; wherefore $\frac{1}{6}$ is the firft part of the Probability required.

If the Ace be miffed the firft time, ftill it may be thrown on the fecond, but the Probability of miffing it the firft time is $\frac{5}{6}$, and the Probability of throwing it the fecond time is $\frac{1}{6}$; wherefore the Probability of miffing it the firft time and throwing it the fecond, is $\frac{5}{6} \times \frac{1}{6}=\frac{5}{30}:$ and this is the fecond part of the Probability required, and therefore the Probability required is in all $\frac{1}{6}+\frac{5}{30}=$ $\frac{11}{30}$.

To this cafe is analogous a queftion commonly propofed about throwing with two Dice either fix or feven in two throws; which will be eafily folved, provided it be known that Seven has 6 Chances to come up, and Six 5 Chances, and that the whole number of Chances in two Dice is $36:$ for the number of Chances for throwing fix or feven being II, it follows that the Probability of throwing either Chance the firft time is $\frac{11}{3^{6}}$; but if both are miffed the firft time, fill either may be thrown the fecond time ; now the Proba-
bility of miffing both the firft time is $\frac{25}{36}$, and the Probability of throwing either of them the fecond time is $\frac{11}{30}$; wherefore the Probability of miffing both of them the firft time, and throwing either of them the fecond time, is $\frac{25}{30} \times \frac{11}{30}=\frac{275}{1296}$, and therefore the Probability required is $\frac{11}{36}+\frac{275}{1296}=\frac{671}{1296}$, and the Probability of the contrary is $\frac{625}{1290}$.

C A S E II ${ }^{\mathrm{d}}$

To find the Probability of throwing an Ace in tbree throws.

> Solution.

The Probability of throwing an Ace the firft time is $\frac{1}{6}$; which is the firft part of the Probability required.

If the Ace be miffed the firft time, ftill it may be thrown in the two remaining throws; but the Probability of miffing it the firft time is $\frac{5}{6}$, and the Probability of throwing it in the two remaining times is (by Cafe 1^{ft}) $=\frac{11}{3^{0}}$. And therefore the Probability of miffing it the firft time, and throwing it in the two remaining times. is $\frac{5}{6} \times \frac{11}{36}=\frac{55}{210}$, which is the fecond part of the Probability required; wherefore the Probability required will be $\frac{1}{6}+\frac{55}{216}=$ $\frac{91}{216}$.

CASE III ${ }^{\text {d }}$

Io find the Probability of throwing an Ace in four throws. Solution.
The Probability of throwing an Ace the firf time is $\frac{1}{6}$, which is the firft part of the Probability required.

If the Ace be miffed the firft time, of which the Probability is $\frac{5}{6}$, there remains the Probability of throwing it in three times, which (by Cafe 2^{d}) is $\frac{91}{216}$; wherefore the Probability of mifling the Ace the firft time, and throwing it in the three remaining times, is. $=\frac{5}{6} \times \frac{91}{216}=\frac{445}{1296}$, which is the fecond part of the Probability.

The Doctrine of Chances.

bility required; and therefore the Probability required is, in the whole, $\frac{1}{6}+\frac{455}{1296}=\frac{671}{1296}$, and the Probability of the contrary $\frac{625}{1296}$.

It is remarkable, that he who undertakes to throw an Ace in four throws, has juft the fame Advantage of his adverfary, as he who undertakes with two Dice that fix or feven thall come up in two throws, the odds in either cafe being 671 to 625 : whereupon it will not be amifs to fhew how to determine eafily the Gain of one Party from the Superiority of Chances he has over his adverfary, upon fuppofition that each fake is equal, and denominated by unity. For although this is a particular cafe of what has been explained in the $7^{\text {th }}$ Article; yet as it is convenient to have the Rule ready at hand, and that it be eafily remembered, I fhall fet it down here. Let therefore the odds be univerfally expreffed by the ratio of a to b, then the refpective Probabilities of winning being $\frac{a}{a+b}$, and $\frac{b}{a+b}$, the right of the firf upon the Stake of the fecond is $\frac{a}{a+b} \times 1$, and likewife the right of the fecond upon the Stake of the firft is $\frac{b}{a+b} \times \mathbf{I}$, and therefore the Gain of the firft is $\frac{a-b}{a+b} \times \mathbf{I}$ or barely $\frac{a-b}{a+b}$: and confequently the Gain of him who undertakes that fix or feven Chall come up in two throws, or who undertakes to fling an Ace in four throws, is $\frac{671-625}{671+625}=\frac{46}{1296}$; that is nearly $\frac{1}{28}$ part of his adverfary's Stake.

C ASE IV ${ }^{\text {th }}$.

To find the Probability of throwing two Aces in two throws.

Solution.

It is plain (by the $8^{\text {th }}$ Art.) that the Probability required is $\frac{1}{6} \times \frac{1}{0}=\frac{1}{36}$.

CASE V ${ }^{\text {th. }}$

To find the Probability of throwing two Aces in three throws.
Solution.
If an Ace be thrown the firft time, then it will only be required to throw it once in two throws; but the Probability of throwing it the firft time is $\frac{1}{6}$, and the Probability of throwing it once in
two throws (by the firft cafe) is $\frac{11}{30}$: wherefore the Probability of throwing it the firft time, and then throwing it once in the two remaining times is $\frac{1}{6} \times \frac{11}{36}=\frac{11}{216}$; and this is equal to the firf part of the Probability required.

If the Ace be miffed the firft time, fill there remains the Probability of throwing it twice together, but the Probability of miffing it the firft time is $\frac{5}{6}$, and the Probability of throwing it twice together is (by the $4^{\text {th }} \mathrm{Cafe}$) $=\frac{1}{30}$; therefore the Probability of both Events is $\frac{5}{6} \times \frac{1}{30}=\frac{5}{210}$; which is the fecond part of the Probability required: therefore the whole Probability required is $\frac{11+5}{216}=\frac{16}{216}$.

C A.S E VI ${ }^{\mathrm{t}}$.

To find the Probability of throwing two Aces in four throws.

Solution.

If an Ace be thrown the firft time, no more will be required than throwing it again in three throws; but the Probability of throwing an Ace the firft time is $\frac{1}{6}$, and the Probability of throwing it in three times is $\frac{9 \mathrm{r}}{216}$ (by the $2^{\mathrm{d}} \mathrm{Care}$;) wherefore the Probability of both happening is $\frac{1}{6} \times \frac{91}{210}=\frac{91}{1296}=1^{18}$ part of the Probability required.
If the Ace be miffed the firft time, fill there will remain the Probability of throwing two Aces in three throws; but the Probability of miffing the Ace the firft time is $\frac{5}{6}$, and the Probability of throwing it twice in three throws. is $\frac{16}{216}$, (by the $5^{\text {th }}$ Cafe;) wherefore the Probability of both together is $\frac{5}{6} \times \frac{16}{210}=\frac{80}{1206}$ $=2^{\mathrm{d}}$ part of the Probability required: and therefore the Probability: required $=\frac{91}{1290}+\frac{80}{1290}=\frac{171}{1296 .}$.
And, by the fame way of reafoning, we may gradually find the. Probability of throwing an Ace as many times as hall be demanded, in any given number of throws.

If, inftead of employing figures in the Solutions of the foregoing Cafes, we employ algebraic Characters, we fhall readily perceive a moft regular order in thofe Solutions.
11. Let therefore a be the number of Chances for the happening of an Event, and b the number of Chances for its failing; then the Probability of its happening once in any number of Trials will be expreffed by the Series $\frac{a}{a+b}+\frac{a b}{a+b)^{2}}+\frac{a b b}{a+b b^{3}}+\frac{a b b^{4}}{a+b b^{4}}$ $+\frac{a b^{4}}{a+b^{5}}+\frac{a b^{5}}{a+b^{0}}$, \&cc. which Series is to be continued to fo many terms as are equal to the number of Trials given : thus if a be $=1, b=5$, and the number of Trials given $=4$, then the Probability required will be expreffed by $\frac{1}{6}+\frac{5}{30}+\frac{25}{210}+\frac{125}{1290}$ $=\frac{671}{1296}$.

The fame things being fuppofed as before, the Probability of the Event's happening twice in any given number of Trials, will be expreffed by the Series $\frac{a a}{a+b^{2}}+\frac{2 a a b}{=a+b^{3}}+\frac{2 a a b b}{a+b^{4}}+\frac{4 a a b^{3}}{(a+b)^{5}}+$ $\frac{\text { caab }}{a+b^{6}}$, \&cc. which is to be continued to fo many terms, wanting one, as is the number of Trials given; thus let us fuppofe $a=1$, $b=5$, and the number of Trials 8 , then the Probability required will be expreffed by $\frac{1}{30}+\frac{10}{210}+\frac{75}{1290}+\frac{500}{7770}+\frac{3,25}{40056}+$ $\frac{18750}{279936}+\frac{109375}{1679616}=\frac{663991}{1679666}$.

And again, the Probability of the Event's happening three times in any given number of Trials will be expreffed by the Series $\frac{a^{3}}{a+b)^{3}}+\frac{a^{3} a^{3}}{a+b^{4}}+\frac{6 a^{3} b b}{a+b^{5}}+\frac{10 a^{3} b^{3}}{a+b)^{6}}+\frac{15 a^{3} 34}{a+b b^{7}}$, \&cc. which is to be continued to fo many terms, wanting two, as is the number of terms given.

But all thefe particular Series may be comprehended under a general one, which is as follows.

Let a be the number of Chances, whereby an Event may happen, b the number of Chances whereby it may fail, l the number of times that the Event is required to be produced in any given number of Trials, and let n be the number of thofe Trials; make $a+b=s$, then the Probability of the Event's happening l times in n Trials, will be expreffed by the Series $\frac{a^{l}}{s^{l}} \times$
 \&cc. which Series is to be continued to fo many terms exclufive of the:
It is to be noted bere, and elfewhere, that the points here made ufe of. fand infead of, the Mark of Multiplication \times.
the common multiplicator $\frac{a^{l}}{s^{l}}$ as are denoted by the number $n-$ $1+\mathrm{t}$.

And for the fame reafon, the Probability of the contrary, that is of the Event's not happening fo often as l times, making $n-l+1=p$, will be expreffed by the Series $\frac{b^{p}}{\rho^{p}} \times$ $\overline{1+\frac{p a}{s}+\frac{p \cdot p+1 \cdot a a}{1 \cdot 2 \cdot}+\frac{p \cdot p+1 \cdot p+2 \cdot a^{3}}{1 \cdot 2 \cdot}+\frac{p \cdot p+1 \cdot p+2 \cdot p+3 \cdot u^{4}}{s^{3}}+\frac{1 \cdot}{1 \cdot}, ~}$ which Series is to be continued to fo many terms, exclufive of the common multiplicator, as are denoted by the number l.

Now the Probability of an Event's not happening being known, the Probability of its happening will likewife be known, fince the Sum of thofe two Probabilities is always equal to Unity ; and therefore the fecond Series, as well as the firft, may be employed in determining the Probability of an Event's happening: but as the number of terms to be taken in the firft is exprefled by $n-l+1$, and the number of terms to be taken in the fecond is expreffed by l, it will be convenient to ufe the firft Series, if $n-l+1$ be lefs than l, and to ufe the fecond, if l be lefs than $n-l+1$; or in other terms, to ufe the firft or fecond according as l is lefs or greater than $\frac{n+1}{2}$.
Thus, fuppofe an Event has I Chance to happen, and 35 to fail, and that it were required to affign the Probability of its happening in 24 Trials; then becaufe in this cafe $n=24$ and $l=1$, it is plain that 24 terms of the firf Series would be requifite to anfwer the Queftion, and that one fingle one of the fecond will be fufficient : and therefore, if in the fecond Series we make $b=35$, $a=1$, and $l=1$, the Probability of the Event's not happening once in 24 Trials, will be expreffed by $\frac{33^{14}}{30^{24}} X_{1}$, which by the help of Logarithms, we thall find nearly equivalent to the decimal fraction 0.50871 ; now this being fubtracted from Unity, the remainder 049129 will exprefs the Probability required; and therefore the odds againft the happening of the Event will be 50 to 49 nearly.

Again, fuppofe it be required to affign the Probability of the preceding Event's. happening twice in 60 Trials; then. becaufe $l=2$, and $n=60, n-l+1$ will be $=59$, which fhews that 59 terms of the firft Series would be required : but if we ufe the fecond, then by reafon of l being $=2$, two of its terms will be fufficient; wherefore
wherefore the two terms $\frac{359}{369} \times 1+\frac{59}{36}$ will denote the Probability of the Event's not happening twice in 60 Trials. Now reducing this to a decimal fraction, it will be found equal to 0.5007 , which being fubtracted from Unity, the remainder 0.4993 will exprefs the Probability required; and therefore the odds againft the Event's happening twice in 60 times will be very little more than 500 to 499.

It is to be obferved of thofe Series, that they are both derived from the fame principle; for fuppofing two adverfaries A and B_{3}, contending about the happening of that Event which has every time a chances to happen, and b chances to fail, that the Chances a are favourable to A, and the Chances b to B, and that A flould lay a: wager with B, that his Chances fhall come up l times in n Trials: then by reafon B lays a wager to the contrary, he himfelf undertakes that his own Chances fhall, in the fame number of Trials, come $\operatorname{up} n-l+1$ times; and therefore, if in the firf Series, we change l into $n-l+1$, and vice versấ, and allo write b for a, and a for b, the fecond Series will be formed.

It will be eafy to conceive how it comes to pafs, that if A undertakes to win l times in n Trials, his Adverfary B neceffarily undertakes in the fame number of Trials to win $n-l+1$ times, if it be confidered that A lofes his wager if he wins but $l-1$ times; now if he wins but l - I times, then fubtracting l - I from n, the remainder fhews the number of times that B is to win, which therefore will be $n-l+\mathrm{I}$.

C A S E VII ${ }^{\text {th }}$

To find the Probability of throwing one Ace, and no more, in four throws.

SOLUTION.

This Care ought carefully to be diftinguifhed from the fourth; for there it was barely demanded, without any manner of reftriction, what the Probability was of throwing an Ace in 4 throws; now in: this prefent cafe there is a reftraint laid on that Event:: for whereas in the former cafe, he who undertakes to throw an Ace defifts from. throwing when once the Ace is come up; in this he obliges himfelf, after it is come up, to a farther Trial which is wholly againft him, excepting the laft throw of the four, after which there is noTrial; and therefore we ought from the unlimited Probability of

16 The Doctrine of Chances.

the Ace's being thrown once in 4 throws, to fubtract the Probability of its being thrown twice in that number of throws: now the firf Probability is $\frac{671}{1296}$ (by the 3^{d} Cafe, and the fecond Probability is $\frac{171}{1296}$ (by the $6^{\text {th }}$ Cafe,) from which it follows that the Probability required is $\frac{500}{1290}$, and the Probability of the contrary $\frac{796}{1296}$; and therefore the Odds againft throwing one Ace and no more in 4 throws are 796 to 500 , or 8 to 5 nearly : and the fame method may be follow'd in higher cafes.

C A S E VIII ${ }^{\text {th. }}$

If A and B play togetber, and that A wants but I Game of being $u p$, and B wants 2 ; what are their refpective Probabilities of winning the Set?

Solution.

It is to be confidered that the Set will neceffarily be ended in two Games at moft, for if A wins the firt Game, there is no need of any farther Trial; but if B wins it, then they will want each but I Game of being up, and therefore the Set will be determined by the fecond Game : from whence it is plain that A wants only to win once in two Games, but that B wants to win twice together. Now fuppofing that A and B have an equal Chance to win a Game, then the Probability which B has of winning the firt Game will be $\frac{1}{2}$, and confequently the Probability of his winning twice together will be $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$; and therefore the Probability which A has of winning once in two Games will be $1-\frac{1}{4}=\frac{3}{4}$, from whence it follows that the Odds of $A^{\text {s }}$ winning are 3 to I .

C A S E IX ${ }^{\text {th. }}$

A and B play together, A wants 1 Gane of being up, and B wants 2 ; but the Cbances whereby B may win a Game, are double to the number of Cbances whereby A may win the fame: 'tis required to affign the refpective Probabilities of winning.

Solution.

It is plain that in this, as well as in the preceding cafe, B ought to: win twice together; now fince B has - 2 Chances to win a Game,
and A I Chance only for the fame, the Probability which B has of winning a Game is $\frac{2}{3}$, and therefore the Probability of his winning twice together is $\frac{2}{3} \times \frac{2}{3}=\frac{4}{9}$, and confequently the Probability of A^{3} winning the Set is $1-\frac{4}{9}=\frac{5}{9}$; from whence it follows that the Odds of A^{s} winning once, before B twice, are as 5 to 4 .

Remark.

Altho' the determining the precife Odds in queftions of Chance requires calculation, yet fometimes by a fuperficial View of the queftion, it may be poffible to find that there will be an inequality in the Play. Thus in the preceding cale wherein B has in every Game twice the number of Chances of A, if it be demanded whether A and B play upon the fquare, it is natural to confider that he who has a double number of Chances will at long run win twice as often as his Adverfary; but that the cafe is here otherwife, for B undertaking to win twice before A once, he thereby undertakes to win oftner than according to his proportion of Chances, fince A has a right to expect to win once, and therefore it may be concluded that B has the difadvantage: however, this way of arguing in general ought to be ufed with the utmoft caution.
12. Whatever be the number of Games which A and B refpectively want of being up, the Set will be concluded at the moft in fo many Games wanting one, as is the fum of the Games wanted between them.

Thus fuppofe that A wants 3 Games of being up, and B_{5}; it is plain that the greateft number of Games that A can win of B before the determination of the Play will be 2, and that the greateft number which B can win of A before the determination of the Play will be 4 ; and therefore the greateft number of Games that can be played between them before the determination of the Play will be 6 : but fuppofing they have played fix Games, the next Game will terminate the Play ; and therefore the utmoft number of Games that can be played between them will be 7 , that is one Game lefs than the Sum of the Games wanted between them.

CASE X ${ }^{\text {th. }}$

Suppofing that A wants 3 Games of being up, and B wants 7 ; but that the Cbances which A and B refpectively bave for winning a Game are as 3 to 5, to find the reSpective Probabilities of winning the Set.

Soldtion.

By reafon that the Sum of the Games wanted between A and B is 10 , it is plain by the preceding Paragraph that the Set will be concluded in 9 Games at moft, and that therefore A undertakes out of 9 Games to win 3 , and B, out of the fame number, to win 7 ;. now fuppofing that the firft general Theorem laid down in the $I I^{\text {th }}$ Art. is particularly adapted to reprefent the Probability of $A^{\text {s }}$ winning, then $l=3$; and becaufe n reprefents the number of Games in which the Set will be concluded, $n=9$; but the number of terms to be ufed in the firft Theorem being $=n-l+1=7$, and the number of terms to be ufed in the fecond Theorem being = $l=3$, it will be more convenient to ufe the fecond, which will reprefent the Probability of $B{ }^{s}$ winning. Now that fecond Theorem being applied to the cafe of n being $=9, l=3, a=3, b=5$, the Probability which B has of winning the Set will be expreffed by $\frac{5^{7}}{87} \times 1+\frac{21}{8}+\frac{252}{4}=\frac{5^{7}}{89} \times 484=0.28172$ nearly; and therefore fubtracting this from Unity, there will remain the Probability which A has of winning the fame, which will be $=0.71828$: and confequently the Odds of $A^{\prime s}$ winning the Set will be 71828 to 2817^{2}, or very near as 23 to 9 .

The fame Principles explained in a different and more general way:
Altho' the principles hitherto explained are a fufficient introduction: to what is to be faid afterwards ; yet it will not be improper to refume fome of the preceding Articles, and to fet them in a new light : it frequently happening that fome truths, when reprefented to the mind under a particular Idea, may be more eafily apprehended than when reprefented under another.
13. Let us therefore imagine a Die of a given number of equal faces, let us likewife imagine another Die of the fame or any other number of equal faces; this being fuppofed, I fay that the number of all the variations which the two Dice can undergo will be obtained by multiplying the number of faces of the one, by the number of faces of the other.

In order to prove this, and the better to fix the imagination, let us take a particular cafe: Suppofe therefore that the firft Die contains 8 faces, and the fecond 12 ; then fuppofing the firf Die to ftand ftill upon one of its faces, it is plain that in the mean time the fecond Die may revolve upon its 12 faces; for which reafon, there will be upon that fingle fore 12 variations: let us now fuppofe that the firft Die ftands upon another of its faces, then whilft that Die fands fill, the fecond Die may revolve again upon its 12 faces; and fo on, till the faces of the firt Die have undergone all their changes: from whence it follows, that in the two Dice, there will be as many times 12 Chances as there are faces in the firft Die; but the number of faces in the firft Die has been fuppofed 8 , wherefore the number of Variations or Chances of the two Dice will be 8 times 12 , that is 96 : and therefore it may he univerfally concluded, that the number of all the variations of two Dice will be the product of the multiplication of the number of faces of one Die, by the number of faces of the other.
14. Let us now imagine that the faces of each Die are diftinguifhed into white and black, that the number of white faces upon the firft is A, and the number of black faces B, and alfo that the number of white faces upon the fecond is a, and the number of black faces b; hence it will follow by the preceding Article, that multiplying $\mathrm{A}+\mathrm{B}$ by $a+b$; the product $\mathrm{A} a+\mathrm{A} b+\mathrm{B} a+\mathrm{B} b$, will exhibit all the Variations of the two Dice: Now let us fee what each of there four parts feparately taken will reprefent.
I°. It is plain, that in the fame manner as the product of the multiplication of the whole number of faces of the firft Die, by the whole number of faces of the fecond, expreffes all the variations of the two Dice; fo likewife the multiplication of the number of the white faces of the firft Die, by the number of the white faces of the fecond, will exprefs the number of variations whereby the two Dice may exhibit two white faces : and therefore, that number of Chances will be reprefented by A a.
2°. For the fame reafon, the multiplication of the number of white faces upon the firft Die, by the number of black faces upon the fecond, will reprefent the number of all the Chances whereby a white face of the firt may be joined with a black face of the fecond ; which number of Chances will therefore be repiefented by Ab.
3°. The multiplication of the number of white faces upon the fecond, by the number of black faces upon the firft, will exprefs the number of all the Chances whereby a white face of the fecond
may be joined with a black face of the firt ; which number of Chances will therefore be reprefented by $a \mathrm{~B}$.
4°. The multiplication of the number of black faces upon the firft, by the number of black faces upon the fecond, will exprefs the number of all the Chances whereby a black face of the firft may be joined with a black face of the fecond ; which number of Chances will therefore be reprefented by $\mathrm{B} b$.
And therefore we have explained the proper fignification and ufe of the feveral parts $\mathrm{A} a, \mathrm{~A} b, \mathrm{~B} a, \mathrm{~B} b$ fingly taken.
But as thefe parts may be connected together feveral ways, fo the Sum of two or more of any of them will anfwer fome queftion of Chance: for inftance, fuppofe it be demanded, what is the number of Chances, with the two Dice above-mentioned, for throwing a white face? it is plain that the three parts $\mathrm{A} a+\mathrm{A} b+\mathrm{B} a$ will anfwer the queftion; fince every one of thofe parts comprehends a cafe wherein a white face is concerned.

It may perhaps be thought that the firf term $\mathrm{A} a$ is fuperfluous, it denoting the number of Variations whereby two white faces can be thrown ; but it will be eafy to be fatisfied of the neceffity of taking it in: for fuppofing a wager depending on the throwing of a white face, he who throws for it, is reputed a winner, whenever a white face appears, whether one alone, or two together, unlefs it be exprefly ftipulated that in cafe he throws two, he is to lofe his wager; in which latter cafe the two terms $\mathrm{A} b+\mathrm{B} a$ would reprefent all his Chances.

If now we imagine a third Die having upon it a certain number of white faces reprefented by α, and likewife a certain number of black faces reprefented by β, then multiplying the whole variation of Chances of the two preceding Dice viz. A $a+\mathrm{A} b+\mathrm{B} a+\mathrm{B} b$ by the whole number of faces $\alpha+\beta$ of the third Die , the product $\mathrm{A} a \alpha+\mathrm{A} b \alpha+\mathrm{B} a \alpha+\mathrm{B} b \alpha+\mathrm{A} a \beta+\mathrm{A} b \beta+\mathrm{B} a \beta+\mathrm{B} b \beta$ will exhibit the number of all the Variations which the three Dice can undergo.

Examining the feveral parts of this new product, we may eafily perceive that the firft term $A a \propto$ reprefents the number of Chances for throwing three white faces, that the fecond term Aba reprefents the number of Chances whereby both the firft and third Die may exhibit a white face, and the fecond Die a black one; and that the reft of the terms have each their particular properties, which are difcovered by bare infpection.

It may alfo be perceived, that by joining together two or more of thofe terms, fome queftion of Chance will thereby be anfwered: for inftance,
inftance, if it be demanded what is the number of Chances for throwing two white faces and a black one ? it is plain that the three terms $\mathrm{A} b \alpha, \mathrm{~B} a \alpha, \mathrm{~A} a \beta$ taken together will exhibit the number of Chances required, fince in every one of them there is the expreffion of two white faces and a black one; and therefore if there be a wager depending on the throwing two white faces and a black one, he who undertakes that two white faces and a black one fhall come up, has for him the Odds of $\mathrm{A} b \alpha+\mathrm{B} a \alpha+\mathrm{A} a \beta$ to $\mathrm{A} a \alpha+\mathrm{B} b \alpha+$ $A b \beta+B a \beta+B b \beta$; that is, of the three terms that include the condition of the wager, to the five terms that include it not.

When the number of Chances that was required has been found, then making that number the Numerator of a fraction, whereof the Denominator is the whole number of variations which all the Dice can undergo, that fraction will exprefs the Probability of the Event; as has been fhewn in the firft Article.

Thus if it was demanded what the Probability is, of throwing three white faces with the three Dice above-mentioned, that Probability will be expreffed by the fraction $\frac{A_{a \alpha}}{A \alpha \alpha+A_{b \alpha}+B_{a \alpha}+A_{a} \beta+B b \alpha+A b \beta+B \alpha \beta+B b \beta}$.

But it is to be obferved, that in writing the Denominator, it will be convenient to exprefs it by way of product, diftinguifhing the feveral multiplicators whereof it is compounded; thus in the preceding cafe the Probability required will be beft expreffed as follows, $\frac{A_{\sim \alpha}}{\overline{A+B} x^{-b+b} x_{\alpha}}$.
If the preceding fraction be conceived as the product of the three fractions $\frac{A}{A+B} \times \frac{a}{a+b} \times \frac{\alpha}{\alpha+\beta}$, whereof the firft expieffes the Probability of throwing a white face with the firf Die; the fecond the Probability of throwing a white face with the fecond Die, and the third the Probability of throwing a white face with the third Die; then will again appear the truth of what has been demonftrated in the $8^{\text {th }}$ Art. and its Corollary, viz. that the Probability of the happening of feveral Events independent, is the product of all the particular Probabilities whereby each particular Event may be produced ; for altho' the cafe here defcribed be confined to three Events, it is plain that the Rule extends itfelf to any number of them.

Let us refume the cafe of two Dice, wherein we did fuppofe that the number of white faces upon one Die was expreffed by A, and the number of black faces by B, and alfo that the number of white faces upon the other was expreffed by a, and the number of black faces by b, which gave us all the variations $\mathrm{A} a+\mathrm{A} b+a \mathrm{~B}+\mathrm{B} b$;
and let usimagine that the number of the white and black faces is refpectively the fame upon both Dice : wherefore $\mathrm{A}=a$, and $\mathrm{B}=b$, and confequently inftead of $\mathrm{A} a+\mathrm{A} b+a \mathrm{~B}+\mathrm{B} b$, we fhall have $a a+a b+a b+b b$, or $a a+2 a b+b b$; but in the firft cafe $\mathrm{A} b$ $+a \mathrm{~B}$ did exprefs the number of variations whereby a white face and a black one might be thrown, and therefore $2 a b$ which is now fubftituted in the room of $\mathrm{A} b+a \mathrm{~B}$ does exprefs the number of variations, whereby with two Dice of the fame refpective number of white and black faces, a white face and a black one may be thrown.

In the fame manner, if we refume the general cafe of three Dice, and examine the number of variations whereby two white faces and a black one may be thrown, it will eafily be perceived that if the number of white and black faces upon each Die are refpectively the fame, then the three parts $\mathrm{A} b \alpha+\mathrm{B} a \alpha+\mathrm{A} a \beta$ will be changed into $a b a+b a a+a a b$, or $3 a a b$, and that therefore $3 a a b$, which is one term of the Binomial $a+b$ raifed to its Cube, will exprefs the number, of variations whereby three Dice of the fame kind would exhibit two white faces and a black one.
15. From the preceding confiderations, this general Rule may be laid down, viz. that if there be any number of Dice of the fame kind, all diftinguifhed into white and black faces, that n be the number of thofe Dice, a and b the refpective numbers of white and black faces upon each Die, and that the Binomial $a+b$ be raifed to the power n; then 1°, the firft term of that power will exprefs the number of Cbances whereby n white faces may be thrown ; 2°, that the fecond term will exprefs the number of Chances whereby $n-\mathrm{I}$ white faces and 1 black face may be thrown; 3°, that the third term will exprefs the number of Chances whereby $n-2$ white faces and 2 black ones may be thrown; and fo on for the reft of the terms.

Thus, for inftance, if the Binomial $a+b$ be raifed to its $6^{\text {th }}$ power, which is $a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}$ $+b^{6}$; the firft term a^{6} will exprefs the number of Chances for throwing 6 white faces; the fecond term $6 a^{5} b$ will exprefs the number of Chances for throwing 5 white and I black; the third term ${ }^{1} 5 a^{4} b^{2}$ will exprefs the number of Chances for throwing 4 white and 2 black; the fourth $20 a^{3} b^{3}$ will exprefs the number of Chances for throwing 3 white and 3 black; the fifth $15 a^{2} b^{4}$ will exprefs the number of Chances for throwing two white and 4 black; the fixth $6 a b^{3}$ will exprefs the number of Chances for 2 white and 4 black; laftly, the feventh b^{6} will exprefs the number of Chances for 6 black.

And therefore having raifed the Binomial $a+b$ to any given power, we may by bare infpection determine the property of any one term belonging to that power, by only obferving the Indices wherewith the quantities a and b are affected in that term, fince the refpective numbers of white and black faces are reprefented by thofe Indices.

The better to compare the confequences that may be derived from the confideration of the Binomial $a+b$ raifed to a power given, with the method of Solution that hath been explained before ; let us refume fome of the preceding queftions, and fee how the Binomial can be applied to them.

Suppofe therefore that the Probability of throwing an Ace in four throws with a common Die of fix faces be demanded.

In order to anfwer this, it muft be confidered that the throwing of one Die four times fucceffively, is the fame thing as throwing four Dice at once; for whether the fame Die is ufed four times fucceffively, or whether a different Die is ufed in each throw, the Chance remains the fame; and whether there is a long or a fhort interval between the throwing of each of thefe four different Dice, the Chance remains ftill the fame; and therefore if four Dice are thrown at once, the Chance of throwing an Ace will be the fame as that of throwing it with one and the fame Die in four fucceffive throws.

This being premifed, we may transfer the notion that was introduced concerning white and black faces, in the Dice, to the throwing or miffing of any point or points upon thofe Dice; and therefore in the prefent cafe of throwing an Ace with four Dice, we may fuppofe that the Ace in each Die anfwer to one white face, and the reft of the points to five black faces, that is, we may fuppofe that $a=1$, and $b=5$; and therefore, having raifed $a+b$ to its fourth power, which is $a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$, every one of the terms wherein a is perceived will be a part of the number of Chances wherehy an Ace may be thrown. Now there are four of thofe parts into which a enters, viz. $a^{4}+4 a^{3} b+6 a^{2} b^{2}$: $+4 a b^{3}$, and therefore having made $a=1$, and $b=5$, we fhall. have $1+20+150+500=671$ to exprefs the number of Chances: whereby an Ace may be thrown with four Dice, or an Ace thrown in four fucceffive throws of one fingle, Die: but the number of all the Chances is the fourth power of $a+b$, that is the fourth power of 6 , which is 1296 ; and therefore the Probability required is meafured by the fraction $\frac{671}{129^{\circ}}$, which is conformable to the refolution: given in the 3^{d} cafe of the queftions belonging to the $10^{\text {th }}$ Art.

It is to be obferved, that the Solution would have been florter, if inftead of inquiring at firft into the Probability of throwing an Ace in four throws, the Probability of its contrary, that is the Probability of miffing the Ace four times fucceffively, had been inquired into ; for fince this cafe is exactly the fame as that of miffing all the Aces with four Dice, and that the laft term b^{4} of the Binomial $a+b$ raifed to its fourth power expreffes the number of Chances whereby the Ace may fail in every one of the Dice ; it follows, that the Probability of that failing is $\frac{b^{+}}{a+b^{+}}=\frac{625}{1296}$, and therefore the Probability of not failing, that is of throwing an Ace in four throws, is $1-\frac{625}{1290}=\frac{1296-625}{1296}=\frac{671}{1290}$.

From hence it follows, that let the number of Dice be what it will, fuppofe n, then the laft term of the power $\overline{a+b})^{n}$, that is b^{n}, will always reprefent the number of Chances whereby the Ace may fail n times, whether the throws be confidered as fucceffive or cotemporary: Wherefore $\frac{b^{n}}{a+b^{n}}$ is the Probability of that failing; and confequently the Probability of throwing an Ace in a number of throws expreffed by n, will be $1-\frac{b^{n}}{a+b^{n}}=\frac{a+b^{n}-b^{n}}{a+a^{n}}$.

Again, fuppofe it be required to affign the Probability of throwing with one fingle Die two Aces in four throws, or of throwing at once two Aces with four Dice : the queftion will be anfwered by help of the Binomial $a+b$ raifed to its fourth power, which being $a^{+}+4 a^{2} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$, the three terms $a^{4}+4 a^{3} b+6 a^{2} b^{2}$ wherein the Indices of a equal or exceed the number of times that the Ace is to be thrown, will denote the number of Chances whereby two Aces may be thrown; wherefore having interpreted a by I, and b by 5 , the three terms above-written will become $1+20+150$ $=171$, but the whole number of Chances, viz. $\overline{a+b} 4$ is in this cafe $=1296$, and therefore the Probability of throwing two Aces in four throws will be meafured by the fraction $\frac{171}{1296}$.
But if we chure to take at firft the Probability of the contrary, it is plain that out of the five terms that the fourth power of $a+b$ confifts of, the two terms $4 a b^{3}+b^{+}$; in the firft of which a enters but once, and in the fecond of which it enters not, will exprefs the number of Chances that are contrary to the throwing of two Aces; which number of Chances will be found equal to $500+625=1125$. And therefore the Probability of not throwing two Aces in four
throws
throws will be $\frac{1125}{1296}$: from whence may be deduced the Probability of doing it, which therefore will be $1-\frac{1125}{1296}=\frac{1296-1125}{1296}$ $=\frac{171}{1296}$ as it was found in the preceding paragraph; and this agrees with the Solution of the fixth Cafe to be feen in the $10^{\text {th }}$ Article.

Univerfally, the laft term of any power $\overline{a+b}{ }^{n}$ being b^{n}, and the laft but one being na b^{n-1}, in neither of which a^{2} enters, it follows that the two laft terms of that power exprefs the number of Chances that are contrary to the throwing of two Aces, in any number of throws denominated by n; and that the Probability of throw-

And likewife, in the three laft terms of the power $\overline{a+b}{ }^{n}$, every one of the Indices of a will be lefs than 3 , and confequently thofe three laft terms will fhew the number of Chances that are contrary to the throwing of an Ace three times in any number of Trials denominated by n : and the fame Rule will hold perpetually.

And thefe conclufions are in the fame manner applicable to the happening or failing of any other fort of Event in any number of times, the Chances for happening and failing in any particular Trial being refpectively reprefented by a and b.
16. Wherefore we may lay down this general Maxim ; that fuppofing two Adverfaries A and B contending about the happening of an Event, whereof A lays a wager that the Event will happen l times in n Trials, and B lays to the contrary, and that the number of Chances whereby the Event may happen in any one Trial are a, and the number of Chances whereby it may fail are b, then fo many of the laft terms of the power $\overline{a+b} b^{n}$ expanded, as are reprefented by l, will hew the number of Chances whereby B may win his wager.

Again, B laying a wager that A will not win l times, does the fame thing in effect as if he laid that A will not win above $l-\mathrm{I}$ times; but the number of winnings and lofings between A and B is n by hypothefis, they having been fuppofed to play n times, and therefore fubtracting l - I from n, the remainder $n-l+1$ will fhew that B himelf undertakes to win $n-l+1$ times ; let this remainder be called p, then it will be evident that in the fame manner as the laft terms of the power $\bar{a}+\overline{-b})^{n}$ expanded, viz. $b^{n}+$
$n a b^{n-1}+\frac{n}{2} \times \frac{n-1}{2} a^{2} b^{n-2}$, \&cc. the number whereof is l, do exprefs the number of Chances whereby B may be a winner, fo the firft terins $a^{n}+n a^{n-1} b+\frac{n}{1} \times \frac{n-1}{2} a^{n}-b^{2} b^{2}$, \&c. the number whereof is p, do exprefs the number of Chances whereby A may be a winner.
17. If A and B being at play, refpectively want a certain number of Games l and p of being up, and that the refpective Chances they have for winning any one particular Game be in the proportion of a to b; then raifing the Binomial $a+b$ to a power whofe Index fhall be $l+p-\mathrm{I}$, the number of Chances whereby they may refpectively win the Set, will be in the fame proportion as the Sum of fo many of the firft terms as are expreffed by p, to the Sum of fo many of the laft terms as are expreffed by l.

This will eafily be perceived to follow from what was faid in the preceding Article : for when A and B refpectively undertook to win l Games and p Games, we have proved that if n was the number of Games to be played between them, then p was neceffarily equal to $n-l+1$, and therefore $l+p=n+1$, and $n=l+p-1$; and confequently the power to which $a+b$ is to be raifed will be $1+p-1$.

Thus fuppofing that A wants 3 Games of being up, and $B 7$, that their proportion of Chances for winning any one Game are refpectively as 3 to 5 , and that it were required to affign the proportion of Chances whereby they may win the Set ; then making $l=3$, $p=7, a=3, b=5$, and raifing $a+b$ to the power denoted by $l+p-1$, that is in this cafe to the $q^{\text {th }}$ power, the Sum of the firft feven terms will be to the Sum of the three laft, in the proportion of the refpective Chances whereby they may win the Set.

Now it will be fufficient in this cafe to take the Sum of the three laft terms; for fince that Sum expreffes the number of Chances whereby B may win the Set, then it being divided by the $9^{\text {th }}$ power of $a+b$, the quotient will exhibit the Probability of his winning; and this Probability being fubtracted from Unity, the remainder will exprefs the Probability of $\mathcal{A}^{\text {s }}$ winning: but the three laft terms of the Binomial $a+b$ raifed to its $9^{\text {th }}$ power are $b 9+9 a b^{3}+36 a a b^{7}$, which being converted into numbers make the Sum 37812500 , and the $9^{\text {th }}$ power of $a+b$ is $\mathbf{1}_{3} 4217728$, and therefore the Probability of B^{\prime} s winning will be expreffed by the fraction $\frac{37812500}{134217728}=$ $\frac{945325}{3355432}$; let this be fubtracted from Unity, then the remainder
$\frac{24101307}{33554+32}$ will exprefs the Probability of \boldsymbol{A}^{3} winning; and therefore ${ }_{\text {the Odds }}^{3,5,5+3,}$ of A^{5} being up before B, are in the proportion of 24101307 to 9453125 , or very near as 23 to 9 : which agrees with the Solution of the $10^{\text {th }}$ Cafe included in the $10^{\text {th }}$ Article.

In order to compleat the comparifon between the two Methods of Solution which have been hitherto explained, it will not be improper to propofe one cafe more.
Suppofe therefore it be required to affign the Probability of throwing one Ace and no more, with four Dice thrown at once.
It is vifible that if from the number of Chances whereby one Ace or more may be thrown, be fubtracted the number of Chances whereby two Aces or more may be thrown, there will remain the number of Chances for throwing one Ace and no more ; and therefore having raifed the Binomial $a+b$ to its fourth power, which is $a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$, it will plainly be feen that the four firt terms exprefs the number of Chances for throwing one Ace or more, and that the three firft terms exprefs the number of Chances for throwing two Aces or more ; from whence it follows that the fingle term $4 a b^{3}$ does alone exprefs the number of Chances for throwing one Ace and no more, and therefore the Probability required will be $\frac{4 a b 3}{a+6^{+}}=\frac{500}{129^{\prime}}=\frac{125}{32^{2}}$: which agrees with the Solution of the $7^{\text {th }}$ Cafe given in the $10^{\text {th }}$ Article.
This Conclufion might alfo have been obtained another way : for applying what has been faid in general concerning the property of any one term of the Binomial $a+b$ raifed to a power given, it will thereby appear that the term $4 a b^{3}$ wherein the indices of a and b are refpectively I and 3 , will denote the number of Chances whereby of two contending parties A and B, the firft may win once, and the other three times. Now A who undertakes that he fhall win once and no more, does properly undertake that his own Chance fhall come up once, and his adverfary's three times; and therefore the term $4 a b^{3}$ expreffes the number of Chances for throwing one Ace and no more.

In the like manner, if it be required to affign the Chances for throwing a certain number of Aces, and it be farther required that there fhall not be above that number, then one fingle term of the power $\overline{a+b}$. will always anfwer the queftion.

But to find that term as expeditioufly as poffible, fuppofe n to be the number of Dice, and l the precife number of Aces to be thrown; then if l be lefs than $\frac{1}{2} n$, write as many terms of the

Series $\frac{n}{1}, \frac{n-1}{2}, \frac{n-2}{3}, \frac{n-3}{4}, \frac{n-4}{5}, \& c$. as there are Units in l; or if l be greater than $\frac{1}{2} n$, write as many of them as there are Units in $\frac{1}{2} n-l$; then let all thofe terms be multiplied together, and the product be again multiplied by $a^{l} b^{r-t}$; and this laft product will exhibit the term expreffing the number of Chances required.

Thus if it be required to affign the number of Chances for throwing precifely three Aces, with ten Dice; here l will be $=3$, and $n=10$. Now becaufe l is lefs than $\frac{1}{2} n$, let fo many terms be taken of the Series $\frac{n}{1}, \frac{n-1}{2}, \frac{n-2}{3}, \frac{n-3}{4}, 8 c$. as there are Units in 3 , which terms in this particular cafe will be $\frac{10}{1}, \frac{9}{2}, \frac{8}{3}$; let thofe terms be multiplied together, the product will be 120 ; let this product be again multiplied by $a^{l} b^{n-l}$, that is (a being $=1$, $b=9, l=3, n=10$) by 6042969 , and the new product will be 725156280 , which confequently exhibits the number of Chances required. Now this being divided by the ro ${ }^{\text {th }}$ power of $a+b$, that is, in this cafe, by 10000000000 , the quotient 0.0725156280 will exprefs the Probability of throwing precifely three Aces with ten Dice; and this being fubtracted from Unity, the remainder 0.9274843720 will exprefs the Probability of the contrary ; and therefore the Odds againft throwing three Aces precifely with ten Dice are 9274843720 , to 725156280 , or nearly as 64 to 5 .

Although we have fhewn above how to determine univerfally the Odds of winning, when two Adverfaries being at play, refpectively want certain number of Games of being up, and that they have any given proportion of Chances for winning any fingle Game; yet I have thought it not improper here to annex a fmall Table, fhewing thofe Odds, when the number of Games wanting, does not exceed fix, and that the Skill of the Contenders is equal.

Games wanting	Odds of winning	$\begin{gathered} \text { Games } \\ \text { wanting. } \end{gathered}$	Odds of winning.	Games wanting.	Odds of winning
-	3, 1	2, 3	11,	3, 5	99, 29
1, 3 -	7,	2, 4	26,	3, 6	219, 37
I, 4	15,	2, 5	57,	4, 5 -	163, 93
1, 6	31, 63,	2, 2,4	120, 42,22	5, 6	$638,386$

Before I put an end to this Introduction, it will not be improper to fhew how fome operations may often be contracted by barely introducing one fingle Letter, inftead of two or three, to denote theProbability of the happening of one Event.
18. Let therefore x denote the Probability of one Event ; y, the Probability of a fecond Event ; z, the Probability of the harpening of a third Event : then it will follow, from what has been faid in the beginning of this Introduction, that $1-x, 1-y, 1-z$ will reprefent the refpective Probabilities of their failing.

This being laid down, it will be eafy to anfwer the Queftions of Chance that may arife concerning thofe Events.
1°. Let it be demanded, what is the Probability of the happening of them all; it is plain by what has been demonftrated before, that the anfwer will be denoted by $x y z$.
2°. If it is inquired, what will be the Probability of their all failing; the anfwer will be $\overline{1-x} \times \overline{1-y} \times \overline{1-z}$, which being expanded by the Rules of Multiplication would be $1-x-y-z$ $+x y+x z+y z-x y z$; but the firf expreffion is more eafily adapted to Numbers.
3°. Let it be required to affign the Probability of fome one of them or more happening; as this queftion is exactly equivalent to this other, what is the Probability of their not all failing ? the anfwer will be $1-\overline{I-x} \times \overline{I-y} \times \overline{I-z}$, which being expanded will become $x+y+z-x y-x z-y z+x y z$.
4°. Let it be demanded what is the Probability of the happening: of the firtt and fecond, and at the fame time of the failing of the third, the Queftion is anfwered by barely writing it down algebraically; thus, $x y \times \overline{1-z}$, or $x y-x y z$: and for the fame reafon the Probability of the happening of the firf and third, and the failing of the fecond, will be $x z \times \overline{1-y}$ or $x y-x y z$: and for the fame reafon: again, the Probability of the happening of the fecond and third, and the failing of the firft, will be $y z \times 1-x$, or $y z-x y z$. And the Sum of thofe three Probabilities, reiz. $x y+x z+y z-3 x y z$. will exprefs the Probability of the happening of any two of them, but of no more than two.
5°. If it be demanded what is the Probability of the happening: of the firft, to the exclufion of the other two, the anfwer will be: $x \times \overline{1-y} \times 1-z$, or $x-x y-x z+x y z$; and in the fame manner, the Probability of the happening of the fecond to the exclufon of the other two, will be $y-x y-y z+x y z$; and again, the Probability of the happening of the third, to the exclufion of the:
other two, will be $z-x z-y z+x y z$, and the Sum of all there Probabilities together, viz. $x+y+z-2 x y-2 x z-2 y z+3 x y z$ will exprefs the Probability of the happening of any one of them, and of the failing of the other two: and innumerable cafes of the fame nature, belonging to any number of Events, may be folved without any manner of trouble to the imagination, by the mere force of a proper Notation.

Remark.

I. When it is required to fum up feveral Terms of a high Power of the Binomial $a+b$, and to divide their Sum by that Power, it will be convenient to write 1 and g for a and b; having taken $q: 1:: b: a$: and to ufe a Table of Logaritbms.

As in the Example of $A r t$. $17^{\text {th }}$, where we had to compute $\frac{b 9+9 a^{3}+36 a^{2}, 7}{\bar{a}+b}, a$ being $=3, b=5$; we fhall have $q=\frac{5}{3}$, and, inftead of the former, we are now to compute the quantity $\frac{9^{9}+99^{8}+36 q^{7}}{1+q^{9}}=\frac{q^{7} \times \overline{q^{2}+9 q+36}}{\frac{1+9}{9}}$.
Now the Factor $q^{2}+9 q+36$ being $\frac{25}{9}+\frac{45}{3}+36=\frac{484}{9}$, Whofe Logarithm is L. $484-L .9=$ - $\mathbf{1 . 7 3 0 6 0 2 9}$ Add the Log. of q^{7}, or $7 \times \bar{L} .5-L .3=-\quad \frac{\mathbf{1 . 5 5 2 9 4 0 9}}{328543}$ And from the Sum _- - $\frac{-\quad-\quad 383543^{9}}{3.283}$ Subtract the Log. of $\overline{I+q^{9}}$, or $9 \times \overline{L .8-L .3}=3.833718_{3}$ So thall the Remainder - - - - $\frac{3.83789^{8255}}{1.44}$ be the Logarithm of B 's chance, viz. 0.281725
And the Complement of this to Unity 0.718275 is the Chance of A, in that Problem of Art. $17^{\text {th }}$.
An Operation of this kind will ferve in moft cafes that occur: but if the Power is very high, and the number of terms to be fummed exceffively great, we muit have recourfe to other Rules; which fhall be given hereafter.
II. When the Ratio of Chances, which we fhall call that of R to S, comes out in larger numbers than we have occafion for; it may be reduced to its leaft exacteft Terms, in the Method propofed by Dr. Wallis, Huygens, and others. As thus ;

Divide the greater Term R by the leffer S; the laft Divifor by the Remainder; and fo on continually, as in finding a common Divifor: and let the feveral Quotients, in the order they arife, be

The Doctrine of Chances.

reprefented by the Letters $a, b, c, d, c, \& c$. Then the Ratio $\frac{s}{R}$; of the leffer Term to the greater, will be contained in this fractional Series.

$$
\frac{\frac{1}{a+\frac{1}{6}}}{\frac{1}{6+\frac{1}{d+\frac{1}{2}}}}
$$

whofe Terms, from the beginning, being reduced to one Fraction; will perpetually approach to the juft Value of the Ratio $\frac{\mathrm{s}}{\mathrm{R}}$; differing from it in excefs and in defect, alternately : fo that if you fop at a Denominator that flands in the $\mathrm{I}^{\mathrm{t}}, 3^{\mathrm{d}}, 5^{\text {th }}, \mathcal{B}^{c}$. place; as at a, c, e, \&c. the Refult of the Terms will exceed the juft Value of the Ratio $\frac{s}{R}$; but if you fop at an even place, as at $b, d, f, \& c$. it will fall fhort of it.

Example 1 .

If it is required to reduce the Ratio juft now found $\frac{281725}{718275}$; or $\frac{11269}{28731}\left(=\frac{s}{R}\right)$ to lower Terms; and which fhall exhibit its juft Quantity the neareft that is poffible in Terms fo low: The Quotients, found as above, will be; $a=2, b=\mathrm{I}, c=\mathrm{I}, d=4$, $e=1, f=1, g=5$. And,

1:. The firf Term $\frac{1}{a}$, or $\frac{1}{2}$, gives the Ratio too great ; becaufe its confequent a is too little.
2°. The Refult of the two firft Terms $\frac{1}{a+\frac{1}{b}}=\frac{1}{2+\frac{1}{1}}=\frac{1}{3}$, is lefs than $\frac{s}{R}$, altho' it comes nearer it than $\frac{1}{2}$ did: becaufe $\frac{1}{b}=r_{2}$ which we added to the Denominator 2, exceeds its juft Quantity $\frac{1}{6+\frac{1}{6}}+\sigma_{c}$.
${ }^{30}$. The three firft Terms $\frac{1}{a+\frac{1}{b+\frac{1}{c}}}=\frac{1}{2+\frac{1}{1+\frac{1}{1}}}$; which reduced are
$\frac{1}{2+\frac{1}{2}}=\frac{2}{5}$ exceeds the Ratio $\frac{s}{R}$: becaufe what we added to
the Denominator b exceeding its juft Quantity $\frac{1}{1+\frac{1}{4}}$ makes $\frac{1}{b+\frac{1}{c}}$ too little, and confequently the whole Fraction too great.
In the fame manner, the following Approximation
$\frac{1}{a+\frac{1}{b+1}}=\frac{1}{2+\frac{1}{1+1}}=\frac{9}{23}$, tho' jufter than the pre-
ceding, errs a little in defect. And fo of the reft.
But to fave unneceffary trouble ; and to prevent any miftake either in the Operation itfelf, or in diftinguibhing the Ratios that exceed or fall fhort of their juft Quantity; we may ufe Mr. Cotes's Rule ; which is to this purpofe.
Write $S: R$ at the head of two Columns, under the Titles greater, and lefs. And place under them the two firt Ratios that are found; as in our Example $1: 2$, and $1: 3$. Multiply the Terms of this laft Ratio by the third Denominator c, and write the Products under the Terms of the firf Ratio $1: 2$. So thall the Sums of the Antecedents and Confequents give a jufter Ratio $2: 5$, belonging to the left-hand Column. Multiply the terms of this laft by the $4^{\text {th }}$ Quotient $d(=4)$, and the Products added to $1: 3$ give the Ratio $9: 23$, belonging to the right-hand Column. This laft multiplied by $e(=1)$, and the Products transferred to the left hand Column, and added to the Ratio that food laft there, give the Ratio $11: 28$. And fo of the reft, as in the Scheme below.

This Method is particularly ufeful, when furd numbers, which have no Termination at all, enter into any Solution.

Example II.
It will be found in the Refolution of our firf Problem that the proportion of Chances there inquired into $\left(\frac{R}{S}\right)$ is that of I to $\sqrt[3]{2}-\mathbf{I}$, or of I to $0.25992 \mathrm{I} \& \mathrm{c}$. Whence our Quotients will be; $a=3$, $b=1, c=5, d=1, c=1, f=4, \& c$.

And the Operation will fand as below.

$$
\begin{array}{ll}
\frac{5: 20}{6: 23} \times d=1 & \times c=5 \\
\frac{6: 23}{7: 27} \\
\frac{7: 27}{13: 50} & \times e=1 \\
\times f=4 & \frac{52: 200}{59: 227}
\end{array}
$$

End of the Introduction.
(then in

$11+2$

$$
\therefore!-7-1+1+1+1+1
$$

$10 \rightarrow 7$
$=-\frac{\square}{1}+$

$$
\frac{\ln }{\ln =1} \cdot 9
$$

$$
4=18
$$

$$
\cdots=\sin L \cdot \therefore \quad \vdots
$$

Solutions of feveral forts of Problems, deduced from the Rules laid down in the Introduction.
$00000000 \% 00000000000000000000 * 000000000000000000$

PROBLEMI.

If A and B play with fingle Bowls, and fuch be the אill of A that be knowes by Experience be can give B two Games out of three; what is the proportion of their Jkill, or what are the Odds, that A may get any one: Game affigned?

Solution.

(2xatET the proportion of Odds be as z to \mathbf{I}; now fince A can give $B 2$ Games out of $3, A$ therefore may uponan equality of Play undertake to win 3 Games together : but the probability of his winning the firft time is $\frac{z}{\tilde{+1}}$, and, by the 8 th Article of the Introduction, the probability of his winning three times together is $\frac{z}{z+1} \times \frac{z}{z+1}$ $x \frac{z}{z+1}$ or $\frac{z^{3}}{z+11^{3}}$. Again, becaufe A and B are fuppofed to play upon equal terms, the probability which A has of winning three times together ought to be expreffed by $\frac{1}{2}$; we have therefore the Equation $\frac{z^{3}}{\overline{z+1}}=\frac{1}{2}$, or $2 z^{3}=\overline{z+1}^{3}$, and extracting the cuberoot on both fides, $z \sqrt[3]{2}=z+1$; wherefore $z=\frac{1}{\sqrt[3]{2}-1}$, and confequently the Odds that A may get any one Game affigned are as: $\frac{1}{\sqrt[3]{2}-1}$ to I , or as I to $\sqrt[3]{2}-\mathrm{I}$, that is in this cale as 50 to 13 vesy near.

Corollary.

By the fame procefs of inveftigation as that which has been ufed in this Problem, it will be found that if A can, upon an equality of Chance, undertake to win n times together, then he may juflly lay the Odds of I to $\sqrt[n]{2}-I$, that he wins any one Game affigned.

PROBLEM II.

If A can without adrantage or difadvantage give $B \mathrm{r}$ Game out of 3; what are the Odds that A gall take any one Game affigned? Or in otber terms, wobat is the proportion of the Cbances they refpectively bave of winning any one Game afligned? Or what is the proportion of their Jkill?

SOLUTION.
Let the proportion be as z to 1 : and fince A can give B I Game out of 3 ; therefore A can upon an equality of play undertake to win 3 Games before B gets 2: now it appears, by the $17^{\text {tb }}$ Art. of the Introduction, that in this cafe the Binomial $z+1$ ought to be raifed to its fourth power, which will be $z^{4}+4 z^{3}+6 z z+4 z+1$; and that the Expectation of the firf will be to the Expectation of the fecond, as the two firft terms to the three laft: but thefe Expectations, are equal by hypothefis, therefore $z^{4}+4 z^{3}=6 z z+$ $4 z+1$: which Equation being folved, z will be found to be 1.6 very near; wherefore the proportion required will be as 1.6 to 1 , or 8 to 5 .

P R O B L E M III.

To find in bow many Trials an Event will probably bappen, or bow many Trials will be nece \int ary to make it indifferent to lay on its Happening or Failing; Suppofing that a is the number of Cbances for its bappening in any one Trial, and b the number of Cbances for its failing.

Solution.

Let x be the number of Trials; then by the $16^{6^{t b}}$ Art. of the Introd. b^{*} will reprefent the number of Chances for the Event to fail x times fucceffively; and $\overline{a+b})^{x}$ the whole number of Chances for
happening or failing, and therefore $\frac{b^{x}}{\overline{a+b^{x}}}$ reprefents the probability of the Event's failing x times together: but by fuppofition that Probability is equal to the probability of its happening once at leaft in that number of Trials; wherefore either of thofe two Probabilities may be expreffed by the fraction $\frac{1}{2}$: we have therefore the Equation $\frac{b^{x}}{a+\lambda^{x}}=\frac{1}{2}$, or $\overline{a+b b^{x}}=2 b^{x}$, from whence is deduced the Equation $x \log \cdot \overline{a+b}=x \log . b+\log .2$; and therefore $x=\frac{\log .2}{\log \overline{a+b}-\log \cdot b}$.
Moreover, let us reaffume the Equation $\overline{a+b)^{x}}=2 b^{x}$, wherein let us fuppofe that $a, b:: \mathrm{I}, q$; hence the faid Equation will be changed into this $\overline{1+\frac{1}{q}}=2$. Or $x \times \log$. $\overline{1+\frac{1}{q}}=\log$. 2 . In this Equation, if q be equal to $1, x$ will likewife be equal to I; but if q differs from Unity, let us in the room of log. $\overline{1+\frac{1}{q}}$ write its value exprefled in a Series; viz.

$$
\frac{1}{9}-\frac{1}{2 q 9}+\frac{1}{39^{3}}-\frac{1}{49^{\dagger}}+\frac{1}{59^{5}}-\frac{1}{69^{6}}, 8<c .
$$

We have therefore the Equation $\frac{x}{9}-\frac{x}{2 q 9}, 8 \mathrm{cc} .=\log$. 2. Let us now fuppofe that q is infinite, or pretty large in refpect to Unity, and then the firft term of the Series will be fufficient; we hall therefore have the Equation $\frac{x}{q}=\log$. 2, or $x=q$ log. 2. But it is to be obferved in this place that the Hyperbolic, not the Tabular, Logarithm of 2, ought to be taken, which being 0.693 , \&c. or 0.7 nearly, it follows that $x=0.79$ nearly.
Thus we have affigned the very narrow limits within which the ratio of x to g is comprehended; for it begins with unity, and terminates at laft in the ratio of 7 to io very near.
But x foon converges to the limit $0.7 q$, fo that this value of x may be aflumed in all cafes, let the value of q be what it will.

Some ufes of this Problem will appear by the following Examples.

ExAMPLEI.

Let it be propofed to find in bow many tbrows one may undertake with an equality of Chance, to throwe two Aces with two Dice.:
The number of Chances upon two Dice being 36 , out of which there is but one chance for two Aces, it follows that the number of

Chances againt it is 35 ; multiply therefore 35 by 0.7 , and the product 24.5 will fhew that the number of throws requifite to that effect will be between: 24 and 25 .

Example 2.

To find in boro many tbrows of tbree Dice, one may undertake to throw three Aces.

The number of all the Chances upon three Dice being 216, out of which there is but one Chance for 3 Aces, and 215 againft it, it follows that 215 ought to be multiplied by 0.7 ; which being done, the product 150.5 will fhew that the number of Throws requifite to that effect will be 15 , or very near it.

Example 3 .

In a Lottery wobereof the number of blanks is to the number of prizes as 39 to 1, (fuch as was the Lottery in 1710) to find bow many Tickets one muft take to make it an equal Cbance for one or more Prizes.

Multiply 39 by 0.7 , and the product 27.3 will thew that the number of Tickets requifite to that effect will be 27 or 28 at moft.
Likewife in a Lottery whereof the number of Blanks is to the number of Prizes as 5 to. 1 , multiply 5 by 0.7 , and the product 3.5 will fhew that there is more than an equality of Chance in 4 lickets for one or more Prizes, but lefs than an equality in three.

REMARK.

In a Lottery whereof the Blanks are to the Prizes as 39 to I , if the number of Tickets in all were but 40, the proportion abovementioned would be altered, for 20 Tickets would be a fufficient number for the juft Expectation of the fingle Prize; it being evident that the Prize may be as well among the Tickets which are taken, as among thofe that are left behind.

Again if the number of Tickets in-all were 80, ftill preferving the proportion of 39 Blanks to one Prize, and confequently fuppofing 78 Blanks to 2 Prizes, this proportion would ftill be altered; for by the Doctrine of Combinations, whereof we are to treat afterwards, it will appear that the Probability of taking one Prize or both in 20 Tickets would be but $\frac{139}{316}$, and the Probability of taking none would be $\frac{177}{316}$; wherefore the Odds againft taking any Prize would be as 177 to 139 , or very near as 9 to 7 . And

And by the fame Doctrine of Combinations, it will be found that ${ }_{23}$ Tickets would not be quite fufficient for the Expectation of a Prize in this Lottery; but that 24 would rather be too many: fo that one might with advantage lay an even Wager of taking a Prize in 24 Tickets.

If the proportion of 39 to 1 be oftner repeated, the number of Tickets requifite for the equal Chance of a Prize, will ftill increafe with that repetition; yet let the proportion of 39 to i be fepeated never fo many times, nay an infinite number of times, the number of Tickets requifite for the equal Chance of a Prize would never exceed $\frac{7}{10}$ of 39 , that is about 27 or 28 .

Wherefore if the proportion of the Blanks to the Prizes is often repeated, as it ufually is in Lotteries; the number of Tickets requifite for a Prize will always be found by taking $\frac{7}{10}$ of the proportion of the Blanks to the Prizes.

Now in order to have a greater variety of Examples to try this Rule by, I have thought fit here to annex a Lemma by me publifhed for the firf time in the year $1 \bar{j} 1 \mathrm{I}$, and of which the inveftigation for particular reafons was deferred till I gave it in my Mijcellanea Analytica anno 1731.

> LEMMA.

To find bow many Cbances there are upon any mimber of Dice, each of them of the fame number of Faces; to throw any given number of points.

SOLUTION.

Let $p+1$ be the number of points given, n the number of Dice, f the number of Faces in each Die : make $p-f=q, q-f=r$, $r-f=s, s-f=t, \& \mathrm{cc}$. and the number of Chances required will be

$$
\begin{aligned}
& +\frac{p}{1} \times \frac{p-i}{2} \times \frac{p-2}{3}, 8 c c . \\
& -\frac{q}{1} \times \frac{q-1}{2} \times \frac{q-2}{3} \text {, \&cc. } \times \frac{\pi}{1} \\
& +\frac{r}{1} \times \frac{r-1}{2} \times \frac{r-t^{2}}{3}, \text { scc. } \times \frac{\pi}{1} \times \frac{n-r}{2} \\
& -\frac{1}{1} \times \frac{\frac{2-1}{2}}{2} \times \frac{\frac{3}{3}}{3}, \& \text { Ec. }^{2} \times \frac{h}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \\
& +\& c .
\end{aligned}
$$

Which Series's ought to be continued till fome of the Factors in each product become either $=0$, or negative.
N. B. So many Factors are to be taken in each of the products $\frac{p}{1} \times \frac{p-1}{2} \times \frac{p-2}{3}, 8<c . \frac{9}{1} \times \frac{q-1}{2} \times \frac{q-2}{3}, \&<c$. as there are Units in $n-1$.
This for Example, let it be required to find how many Chances there are for throwing 16 Points with four Dice; then making $p+1$ $=16$, we have $p=15$, from whence the number of Chances required will be found to be

$$
\begin{array}{ll}
+\frac{15}{1} \times \frac{14}{2} \times \frac{13}{3} & =+455 \\
-\frac{9}{1} \times \frac{8}{2} \times \frac{7}{3} \times \frac{4}{1} & =-33^{6} \\
+\frac{3}{1} \times \frac{2}{2} \times \frac{1}{3} \times \frac{4}{1} \times \frac{3}{2}=+6
\end{array}
$$

But $455-336+6=125$, and therefore one hundred and twentyfive is the number of Chances required.
Again, let it be required to find the number of Chances for throwing feven and twenty Points with fix Dice; the operation will be

$$
\begin{array}{ll}
+\frac{26}{1} \times \frac{25}{2} \times \frac{24}{3} \times \frac{23}{4} \times \frac{22}{5} & =+65780 \\
-\frac{20}{1} \times \frac{19}{2} \times \frac{18}{3} \times \frac{17}{4} \times \frac{66}{5} \times \frac{6}{1} & =-93024 \\
+\frac{14}{1} \times \frac{13}{2} \times \frac{12}{3} \times \frac{11}{4} \times \frac{10}{5} \times \frac{6}{1} \times \frac{5}{2} & =+30030 \\
-\frac{8}{1} \times \frac{7}{2} \times \frac{6}{3} \times \frac{5}{4} \times \frac{4}{5} \times \frac{6}{1} \times \frac{5}{2} \times \frac{4}{3}=-1120
\end{array}
$$

Wherefore $65780-93024+30030-1120=1666$ is the number of Chances required.
Let it be farther required to affign the number of Chances for throwing fifteen Points with fix Dice.

$$
\begin{aligned}
& +\frac{14}{1} \times \frac{13}{2} \times \frac{12}{3} \times \frac{11}{4} \times \frac{10}{5}=+2002 \\
& -\frac{8}{1} \times \frac{7}{2} \times \frac{6}{3} \times \frac{5}{4} \times \frac{4}{5} \times \frac{6}{1}=-336
\end{aligned}
$$

But $2002-336=1666$ which is the number required.

> Coroliary.

All the points equally diftant from the Extremes, that is from the leaft and greateft number of Points that are upon the Dice, have the fame number of Chances by which they may be produced; wherefore if the number of points given be nearer to the greater Extreme than to the leffer, let the number of points given
be fubtracted from the Sum of the Extremes, and work with the remainder; by which means the Operation will be fhortened.

Thus if it be required to find the number of Chances for throwing 27 Points with 6 Dice: let 27 be fubtracted from 42, Sum of the Extremes 6 and 36, and the remainder being 15 , it may be concluded that the number of Chances for throwing 27 Points is the fame as for throwing 15 Points.

Although, as I have faid before, the Demonftration of this Lemma may be had from my Mi/cellanea; yet I have thought fit, at the defire of fome Friends, to transfer it to this place.

Demonstration.

1°. Let us imagine a Die fo conftituted as that there thall be upon it one fingle Face marked I, then as many Faces marked II as there are Units in r, and as many Faces marked 111 as there are Units in $r r$, and fo on; that the geometric Progreffion $1+r+r r+r^{3}+$ $r^{4}+r^{5}+r^{6}+r^{7}+r^{3}$, \&cc. continued to fo many Terms as there are different Denominations in the Die, may reprefent all the Chances of one Die : this being fuppofed, it is very plain that in order to have all the Chances of two fuch Dice, this Progreffion ought to be raifed to its Square, and that to have all the Chances of three Dice, the fame Progreffion ought to be raifed to its Cube; and univerfally, that if the number of Dice be expreffed by n, that Progreffion ought accordingly to be raifed to the Power n. Now fuppofe the number of Faces in each Die to be f, then the Sum of that Prohappen upon n Dice, will be expreffed by fome Term of the Series that refults from the Fraction $\frac{1-r}{1-r}$ raifed to the power n. But as the leaft number of Points, that can be thrown with n Dice, is n Units, and the next greater $n+1$, and the next $n+2, \& c$. it is plain that the firf Term of the Series will reprefent the number of Chances for throwing n Points, and that the fecond Term of the Series will reprefent the number of Chances for throwing $n+$ I Points, and fo on. And that therefore if the number of Points to be thrown be expreffed by $p+\mathrm{I}$, it will be but affigning that Term in the Series of which the diftance from the firft fhall be expreffed by $p+\mathrm{I}$ - n.

42

 The Doctrine of Chances.But the Series which would refult from the raifing of the Fraction $\frac{f-r}{1-r}$ to the Power n, is the Product of two other Series, whereof one is $1+n r+\frac{n}{1} \times \frac{n+1}{2} r r+\frac{n}{1} \times \frac{n+1}{2} \times \frac{n+2}{3} r^{3}, \& c$. the other is $\mathrm{I}-n r^{\prime}+\frac{n}{1} \times \frac{n-1}{2} r^{2 f}-\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} r i f+\& \mathrm{c}$. Wherefore, if thefe two Series be multiplied together, all the Terms of the product will feverally anfwer the feveral numbers of Chances that are upon n Dice.

And therefore if the number of Points to be thrown be expreffed by $p+1$, it is but collecting all the Terms which are affected by the Power r^{t+1-n}, and the Sum of thofe Terms will anfwer the Queftion propofed.

But in order to find readily all the Terms which are affected by the Power $r^{\beta+1-n}$, let us fuppofe, for fhortnefs fake, $p+1-n=1 ;$ and let us fuppofe farther that Er $!$ is that Term, in the firft Series, of which the diftance from its firft Term is l; let alfo $\mathrm{Dr}!-f$ be that Term, in the firf Series, of which the diftance from its firft Term is $l-f$, and likewife let $\mathrm{Cr}-{ }^{-2 f}$ be that Term, in the firft Series, of which the diftance from its firft Term is denoted by $l-2 f$, and fo on, making perpetually a regrefs towards the firft Term. This being laid down, let us write all thofe Terms in order, thus

$$
\mathrm{Er}^{l}+\mathrm{D} r^{l-f}+\mathrm{Cr}^{l-2 f}+\mathrm{Br} r^{l-3 f} \text {, \& } \mathrm{c}
$$

and write underneath the Terms of the fecond Series, in their natural order. Thus
$\mathrm{E} r^{l}+\mathrm{D} r^{l-f}+\mathrm{C} r^{l-2 f}+\mathrm{B} r^{l-3 f}, \& \mathrm{c}$.

$$
\mathbf{I}-n r f+\frac{n}{1} \times \frac{n-1}{2} r^{2 f}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} r 3 f, \& c c .
$$

then multiplying each Term of the firft Series by each correfponding Term of the fecond, all the Terms of the product, viz.

$$
\mathrm{E} r^{l}-n \mathrm{D} r^{l}+\frac{n}{1} \times \frac{n-1}{2} \mathrm{C} r^{l}-\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \mathrm{Br} r^{l}, \& \mathrm{cc} .
$$

will be affected with the fame power r^{\prime}.
Now the Coefficient E containing fo many factors $\frac{n}{1} \times \frac{n+1}{2} \times$ $\frac{x+2}{3}$, \&cc. as there are Units in l; it is plain, that when the Denominators of thofe factors are continued beyond a certain number of them, denominated by $n-1$, then the following Denominators will be $n, n+1, n+2, \& x$. which being the fame as the firft Terms of the Numerators, it follows that if from the value of the Coefficient E be rejected thofe Numerators and Denominators which
are equal, there will remain out of the Numerators, written in an inverted order, the Terms $n+l-1, n+l-2, n+l-3$, $\& c \mathrm{c}$. of which the laft will be $l+\mathbf{r}$; and that, out of the Denominators written in their natural order, there will remain $\mathrm{I}, 2,3,4$, 5 , \&c. of which the laft will be $n-1$: all which things depend intirely on the nature of an Arithmetic Progreffion. Wherefore the firt Term
$\mathrm{E} r^{l}$ is $=\frac{n+l-1}{1} \times \frac{n+l-2}{2} \times \frac{n+l-3}{3} \cdots \cdots \frac{l+1}{n-1} r$
Now in the room of l, fubflitute its value $p+1-n$, then $\mathrm{E} r^{l}=$ $\frac{p}{1} \times \frac{p-1}{2} \times \frac{p-2}{3}, \& \mathrm{c} . \times r^{l}$, and in the fame manner will the fecond Term
$-n \mathrm{D} r^{\prime}$ be $=-\frac{p-f}{1} \times \frac{p-f-1}{2} \times \frac{p-f-2}{3} \&<c . \times n r^{\prime}$, and alfo the third Term
$+\frac{n}{1} \times \frac{n-1}{2} \mathrm{Cr} r^{l}$ will be $=+\frac{p-2 f}{1} \times \frac{p-2 f-1}{2} \times \frac{p-3 f-2}{3} \& c \mathrm{c}$. $\times \frac{n}{2} \times \frac{n-1}{2} r l$, and fo on. Suppofe now $r=\mathrm{r}, p-f=q, q-f=r$, $r-f=s, \& c$. and you fhall have the very Rule given in our Lemma.

Now to add one Example more to our third Problem, let it be required to find in how many throws of 6 Dice one may undertake to throw ${ }_{5}$ Points precifely.

The number of Chances for throwing ${ }_{15}$ Points being 1666, and the whole number of Chances upon 6 Dice being 46656 , it follows that the number of Chances for failing is 44990 ; wherefore dividing 44990 by 1666 , and the quotient being 27 nearly, multiply 27. by 0.7 , and the product 18.9 will thew that the number of throws requifite to that effect will be very near 19 .

PR O B L EM IV.

To find bow many Trials are neceffary to make it equally probable that an Event will bappen twice, fuppofing that a is the number of Cbances for its happening in any one Trial, and b the number of Cbances for its failing.

Solution.
Let x be the number of Trials: then from what has heen demonftrated in the $16^{\text {th }}$ Art. of the Introd. it follows that $b^{x}+x a b^{x-1}$ is

44 The Doctrine of Chances.
the number of Chances whereby the Event may fail, $\overline{a+b} x$ comprehending the whole number of Chances whereby it may either happen or fail, and confequently the probability of its failing is $\frac{b^{x}+x a b^{x}-1}{\overline{a+b} x}$: but, by Hypothefis, the Probabilities of happening and failing are equal; we have therefore the Equation $\frac{b^{x}+x a b^{x-1}}{a+b b^{x}}$ $=\frac{1}{2}$, or $\overline{a+b} b^{x}=2 b^{x}+2 x a b^{x-1}$, or making $a, b:: \mathbf{1}, q$, $\overline{1+\frac{1}{q} x}=2+\frac{2 x}{q}$. Now if in this Equation we fuppofe $q=1, x$ will be found $=3$, and if we fuppofe q infinite, and alfo $\frac{x}{q}=z$, we fhall have the Equation $z=\log 2+\log . \overline{1+z}$, in which taking the value of z, either by Trial or otherwife, it will be found $=1.678$ nearly ; and therefore the value of x will always be between the limits $3 q$ and $\mathrm{I} .678 q$, but will foon converge to the laft of thefe limits; for which reafon, if q be not very fmall, x may in all cafes be fuppofed $=1.6789$; yet if there be any fufpicion that the value of x thus taken is too little, fubflitute this value in the original Equation $\overline{1+\frac{1}{9}}=2+\frac{2 x}{9}$, and note the Error. Then if it be worth taking notice of, increare a little the value of x, and fubfitute again this new value of x in the aforefaid Equation; and noting the new Error, the value of x may be fufficiently corrected by applying the Rule which the Arithmeticians call double falfe Pofition.

Example i.
To find in bow many tbrows of three Dice one may undertake to tbrow tbree Aces twice.

The number of all the Chances upon three Dice being 216, out of which there is but 1 Chance for three Aces, and 215, againft it ; multiply 215 by I .678 and the product 360.8 will hew that the number of throws requifite to that effect will be 36 I , or very near it.

Example 2.
To find in bow many throws of 6 Dice one may undertake to tbrow ${ }_{5} 5$ Points twice.

The number of Chances for throwing 15 Points is 1666 , the number of Chances for miffing 44990; let 44990 be divided by 1666,

1666, the Quotient will be 27 very near: wherefore the Chances for throwing and miffing 15 Points are as i to 27 refpectively; multiply therefore 27 by 1.678 , and the product 45.3 will thew that the number of Chances requifiee to that effect will be 45 nearly.

Example 3.
In a Lottery wbereof the number of Blanks is to the Number of Prizes as 39 to 1 : to find hore many Tickets mult be taken to make it as probable that two or more benefits will be taken as not.

Multiply 39 by .678 and the product 65.4 will fhew that no lefs than 6_{5} Tickets will be requifite to that effect.

PR O B L E M V.

To find bow many Trials are neceeflary to make it equally probable that an Event will bappen three, four, fioe, $छ^{\circ} \mathrm{c}$. times; fuppofing that a is the number of Cbances for its bappening in any one Trial, and b the number of Cbances for its failing.

Solution.

Let x be the number of Trials requifite, then fuppofing as before $a, b:: \mathrm{I}, q$, we fhall have the Equation $\overline{1+\frac{1}{q}}^{x}=2 \times$
 $\overline{1+\frac{1}{q}}{ }^{x}=2 \times 1+\frac{x}{q}+\frac{x}{1} \times \frac{x-1}{29 q}+\frac{x}{1} \times \frac{x-1}{2} \times \frac{x-2}{3 q^{3}}$ in the cafe of the quadruple Event: and the law of the continuation of there Equations is manifeft. Now in the firft Equation if q be fuppofed $=\mathrm{I}$, then will x be $=5$; if q be fuppofed infinite or pretty large in refpect to Unity, then the aforefaid Equation, making $\frac{x}{9}=z$, will be changed into this, $z=\log .2+\log$.
$1+z+\frac{1}{2} z z$; wherein z will be found nearly $=2.675$, wherefore x will always be between $5 q$ and 2.6759 .

Likewife in the fecond Equation, if q be fuppofed $=1$, then will x be $=7 q$; but if q be fuppofed infinite or pretty large in refpect to Unity, then $z=\log . \dot{2}+\log .1+z+\frac{1}{z} z z+\frac{1}{9} z^{3}$;
whence z will be found nearly $=36719$, wherefore x will be between $7 q$ and 3.67199 .

A Table of the Limits.
The Value of x will always be For a fingle Event, between $1 q$ and $0.693 q$ For a double Event, between $3 q$ and $1.678 q$ For a triple Event, between $5 q$ and $2.675 q$ For a quadruple Event, between 79 and $3.672 q$ For a quintuple Event, between $9 q$ and $4.670 q$ For a fextuple Event, between $11 q$ and $5.668 q$ $\& c$.
And if the number of Events contended for, as well as the number q be pretty large in refpect to Unity; the number of Trials requifite for thofe Events to happen n times will be $\frac{2 n-1}{2} q$, or barely $n q$.

Remark.
From what has been faid we may plainly perceive that altho' we may, with an equality of Chance, contend about the happening of an Event once in a certain number of Trials, yet we cannot, without difadvantage, contend for its happening twice in double that number of Trials, or three times in triple that number, and fo on. Thus, altho' it be an equal Chance, or rather more than an Equality, that I throw two Aces with two Dice in 25 throws, yet I cannot undertake that the two Aces fhall come up twice in 50 throws, the number requifite for it being 5^{8} or 59 ; much lefs can I undertake that they thall come up three times in 75 throws, the number requifite for it being between 93 and 94 : fo that the Odds againft the happening of two Aces in the firft throw being 35 to I, I cannot undertake that in a very great number of Trials, the happening thall be oftner than in the proportion of 1 to 35 . And therefore we may lay down this general Maxim, that Events at long run will not happen oftner than in the proportion of the Chances they have to happen in any one Trial; and that if we affign any other proportion varying never fo little from that, the Odds againft us will increafe continually.

To this may be objected, that from the premifes it would feem to follow, that if two equal Gamefters were to play together for a confiderable time, they would part without Gain or Lofs on either fide: but the anfwer is eafy; the longer they play the greater Probability
bability there is of an increafe of abfolute Gain or Lofs; but at the fame time, the greater Probability there is alfo of a decreafe, in refpect to the number of Games played. Thus if 100 Games produce a difference of 4 in the winnings or lofings, and 200 Games produce a difference of 6 , there will be a greater proportion of Equality in the fecond cale than in the firt.

P R O B L E M VI.

Three Gamefters A, B, C play together on this condition, that be fball win the Set who bas foonef got a certain number of Games; the proportion of the Cbances which each of them bas to get any one Game a/figned, or which is the fame thing, the proportion of their kill, being reSpectively as a, b, c. Now after they bave played fome time, they find themfelves in this circumftance, that A wants I Game of being up, B 2 Games, and C 3 Games; the whole Stake amongft them being fuppofed 1; what is the Expectation of each?

Solution. I.

In the circumftance the Gamefters are in, the Set will be ended in 4 Games at moft ; let therefore $a+b+c$ be raifed to the fourth power, which will be $a^{4}+4 a^{3} b+6 a a b b+4 a b 3+b^{4}+4 a^{3} c+$ $12 a a b c+4 b c+6 a a c c+12 a b c c+6 b b c c+4 a c^{3}+12 a c b b+$ $4 b c^{3}+c^{4}$.

The terms $a^{4}+4 a^{3} b+4 a^{3} c+6 a a c c+12 a a b c+12 a b c c$, wherein the dimenfions of a are equal to or greater than the number of Games which A wants, wherein alfo the Dimenfions of b and c are lefs than the number of Games which B and C refpectively want, are intirely favourable to A, and are part of the Numerator of his Expectation.

In the fame manner, the terms $b^{4}+4 b^{3} c+6 b b c c$ are intirely favourable to B.

And likewife the terms $4 b c^{3}+c^{4}$ are intirely favourable to C.
The reft of the terms are common, as favouring partly one of the Gamefters, partly one or both of the other ; wherefore thefe Terms are fo to be divided into their parts, that the parts, refpectively favouring each Gamefter, may be added to his Expectation.

Take

48
 The Doctrine of Chances.

Take therefore all the terms which are common, viz. $6 a a b b, 4 a b^{3}$, $12 a b c c, 4 a c^{3}$, and divide them actually into their parts; that is, 1°, Gaabb into $a a b b, a b a b, a b b a, b a a b, b a b a, b b a a$. Out of thefe fix parts, one part only, viz. bbaa will be found to favour B, for 'tis only in this term that two Dimenfions of b are placed before one fingle Dimenfion of a, and therefore the other five parts belong to A; let therefore $5 a a b b$ be added to the Expectation of A, and $1 a a b b$ to the Expectation of $B .2^{\circ}$. Divide $4 a b^{3}$, into its parts $a b b b, b a b b, b b a b, b b b a$; of thefe parts there are two belonging to A, and the other two to B; let therefore $2 a b^{3}$ be added to the expectation of each. 3°. Divide $12 a b b c$ into its parts; and eight of them will belong to A, and 4 to B; let therefore $8 a b b c$ be added to the Expectation of A, and $\angle a b b c$ to the Expectation of $B . \quad 4^{\circ}$. Divide $4 a c 3$ into its parts, three of which will be found to be favourable to A, and one to C; add therefore $3 a c^{3}$ to the Expectation of A, and ${ }^{1} a c^{3}$ to the Expectation of C. Hence the Numerators of the feveral Expectations of A, B, C, will be refpectively,

1. $a^{4}+4 a^{3} b+4 a^{3} c+6 a a c c+12 a a b c+12 a b c c+5 a a b b$ $-1-2 a b^{3}+8 a b b c+3 a c^{3}$.
2. $b^{4}+4 b^{3} c+6 b b c c+1 a a b b+2 a b^{3}+4 a b c c$.
3. $4 b c^{3}+1 c^{4}+1 a c^{3}$.

The common Denominator of all their Expectations being $\overline{a+b+c} 4$.
Wherefore if a, b, c, are in a proportion of equality, the Odds of winning will be refpectively as $57,18,6$, or as $19,6,2$.

If n be the number of all the Games that are wanting, p the number of Gamefters, and $a, b, c, d, \& c$. the proportion of the Chances which each Gamefter has refpectively to win any one Game affigned; let $a+b+c+d$, \&cc. be raifed to the power $n+1-p$, and then proceed as before.

REMARK.

This is one general Method of Solution. But the fimpler and more common Cafes may be managed with very little trouble. As,
\mathbf{r}°. Let A and B want one game each, and C two games. Then the following game will either put him in the fame fituation as A and B, entitling him to $\frac{1}{3}$ of the Stake ; of which there is I Chance: or will give the whole Stake to A or B; and of this there are two Chances. C 's Expectation therefore is worth $\frac{1 \times \frac{1}{3}+2 \times 0}{\frac{3}{3}}$
(Introd. Art. 5.) $=\frac{1}{9}$. Take this from the Stake 1 , and the Remainder $\frac{8}{9}$, to be divided equally between A and B, makes the expectations of A, B, C, to be $4,4, \mathrm{I}$, refpectively; to the common Denominator 9 .
2°. Let A want 1 Game, B and C two games each. Then the next Game will either give A the whole Stake ; or, one of his Ad_ verfaries winning, will reduce him to the Expectation $\frac{4}{9}$, of the former Cafe. His prefent Expectation therefore is $\frac{1 \times 1+2 \times \frac{4}{9}}{3}=\frac{17}{27}$: and the Complement of this to Unity, viz. $\frac{10}{27}$, divided equally between B and C, gives the three Expectations, $17,5,5$, the common Denominator being 27 .
3°. A and B wanting each a Game, let C want 3. In this Cafe, C has 2 Chances for O, and I Chance for the Expectation $\frac{1}{9}$, of $C a f e$ I. That is, his Expectation is $\frac{1}{27}$; and thofe of A and B are $\frac{12}{27}$, each.
4°. Let the Games wanting to A, B, and C, be $1,2,3$, refpectively: then A winning gets the Stake $1 ; B$ winning; A is in Cafe 3, with the Expectation $\frac{13}{27}$, or C winning, he has, as in Cafe 2, the Expectation $\frac{17}{27}$. Whence his prefent Expectation is $\frac{1}{3} \times \overline{1+\frac{12}{27}+\frac{17}{27}}=\frac{57}{81}$.

Again, A winning, B gets 0 ; himfelf winning, he acquires (Cafe 3.) the Expectation $\frac{13}{27}$. And, C winning, he is in Cafe 2, with the Expectation $\frac{5}{27}$. His prefent Expectation therefore is $\frac{1}{3} \times$ $0+\frac{13}{27}+\frac{5}{27}=\frac{18}{81}$. Add this to the Expectation of A, which was $\frac{57}{81}$; the Sum is $\frac{75}{81}$: and the Complement of this to Unity, which is $\frac{6}{81}$, is the Expectation of C.

Or to find C 's Expectation directly : A winning, C has $\circ ; B$ winning, he has the Expectation $\frac{1}{27}$, (Cafe 3.) and, himfelf winning, he has $\frac{5}{27}$, as in Cafe $2:$ In all, $\frac{1}{3} \times \overline{0+\frac{1}{27}+\frac{5}{27}}=\frac{6}{81}$.

And thus, afcending gradually through all the inferior Cafes, or by the general Rule, we may compofe a Table of Odds for 3 Gamfters, fuppofed of equal Skill; like that for 2 Gainefters in Art. $17^{\text {th }}$ of the Introduction.

Table for 3 Gameflers.

$\overline{\begin{array}{l} \text { Games } \\ \text { wanting. } \end{array}}$	Odds.	$\begin{aligned} & \text { ampes } \\ & \text { anting. } \end{aligned}$	Odds.	$\left\|\begin{array}{c} \text { Games } \\ \text { wanting. } \end{array}\right\|$	Odds.	
A. B.C	6.	A B. C.	a. b.	A.B. C.	a.	
$1{ }^{1} 12$	1	123	196	22	33^{8}	33^{8}
$1 \begin{array}{ll}1 & 3 \\ 1 \\ 1\end{array}$	$13{ }^{13} 131$	1	$\begin{array}{lll}178 \\ 1788 \\ 542 & 58\end{array}$	25	353	353
$\begin{array}{lll}1 & 1 \\ 1 & 4 \\ 1\end{array}$	40 401	$1 \begin{array}{llll}1 & 2 & 5 \\ 1 & 3 & \\ 1\end{array}$	542 646 6179 62	2 2	I33	55 55 85 85
	12112			23		
$\begin{array}{llll}1 & 2 & 5 \\ 1 & 2 \\ 1 & 3 & 3\end{array}$	17 65	I 3	$\left\|\begin{array}{lll} 629 & 87 & 1 \end{array}\right\|$	$2{ }^{2} \mathrm{sc}$		$\begin{aligned} & 635 \\ & 8 \mathrm{c} . \end{aligned}$

Solution II. and more General.
It having been objected to the foregoing Solution, that when there are feveral Gamefters, and the number of games wanting amongft them is confiderable; the Operation muft be tedious; and that there may be fome danger of miftake, in feparating and collecting the feveral parts of their Expectations, from the Terms of the Multinomial: I invented this other Solution, which was publifhed in the VII ${ }^{\text {th }}$ Book of my Mi/cellanea Analytica, A. D. 173°.

The Skill of the Gamefters $A, B, C, \& c$. is now fuppofed to be as $a, b, c, \& c c$. refpectively: and the Games they want of the Set are p, $q, r, \& c \mathrm{c}$. Then in order to find the Chance of a particular Gamefter, as of A, or his Right in the Stake 1 , we may proceed as follows.

1. Write down Unity.
2°. Write down in order all the Letters $b, c, d, \& c$. which denote the Skill of the Gamefters, excepting only the Letter which belongs to the Gamefter whofe Chance you are computing; as in our Example, the Letter a is omitted.
3°. Combine the fame Letters b, c, d, \&xc. by two's, three's, four's, \&cc.
4°. Of thefe Combinations, leave out or cancel all fuch as makeany Gamefter befides A, the winner of the Set; that is, which give to B, q Games; to C, x Games, to D, s Games, \&x.
5°. Multiply the whole by ap- $^{-1}$.
6°. Prefix to each Product the Number of its Permutations, that is, of the different ways in which its Letters can be written *.

[^3]7°. Let all the Products that are of the fame dimenfion, that is, which contain the fame number of Letters, be collected into different fums.
8°. Let thefe feveral Sums, from the loweft dimenfion upwards, be divided by the Terms of this Series,
$\int^{p-1}, \int^{p}, \int^{p+1}, \int^{p+2}, \& c$. refpectively : in which Series $\int=a+b+$
$+d+\& c$. $c+d+\& c$.
9°. Laftly, multiply the Sum of the Quotients by $\frac{a}{5}$, and the Product fhall be the Chance or Expectation required; namely the Right of A in the Stake r. And in the fame way, the Expectations of the other Gamefters may be computed.

Example.

Suppofing $p=2, q=3, r=5$; write, as directed in the Rule,
$\mathbf{1}, b+c, b b+b c+c c, b b c c+b c^{3}+c^{4}, b b c^{3}+b c^{4}, b b c^{4}$. Multiply each term by a^{p-1}, which in our Example is a^{2-1}; or a; prefix to each Product the number of its Permutations, dividing at the fame time the fimilar Sums by $\int^{p=1}, \int p, \int_{p+1}$, \&c. that is by $\int_{\text {, }}$ $\int^{2}, S^{3}, \& c$; And the whole multiplied into $\frac{a}{f}$ will give the Expectation of $A=\frac{a}{f}$ into $\frac{a}{\int}+\frac{2 a b+2 a c}{f^{2}}+\frac{3 a b b+6 a b c+3 a c c}{\gamma^{3}}+$

If we now fubftitute for a, b, c, any numbers at pleafure, we fhall have the anfwer that belongs to thofe fuppofed degrees of Skill. As if we make $a=\mathrm{r}, b=\mathrm{I}, c=\mathrm{I}$; the Expectation of A will be, $\frac{1}{3} \times \overline{\frac{1}{3}+\frac{4}{9}+\frac{12}{27}+\frac{28}{51}+\frac{65}{243}+\frac{90}{729}+\frac{105}{2187}}=\frac{1423}{2187}$. And, by like Operations, thofe of B and C will be $\frac{625}{2187}$ and $\frac{119}{2187}$ refpectively.

PR O BLE M VII.

Two Gamefters A and B, each baving 12 Counters, play with three Dice, on condition that if in Points come up, B fall give one Counter to A; if 14 Points come up, A Ball give one Counter to B ; and that be fball be the winner who Sball Sooneft get all the Counters of bis Adverfary: what is the Probability that each of thems bas of winning?

SOLUTION.

Let the number of Counters which each of them has be $=p$; and let a and b be the number of Chances they have refpectively for getting a Counter, each caft of the Dice: which being fuppofed, I fay that the Probabilities of winning are refpectively as a? to $b p$; now becaufe in this cafe $p=12$, and that, by the preceding Lemma, $a=27$, and $b=15$, it follows that the Probabilities of winning are refpectively as 27^{12} to 15^{12}, or as 9^{12} to 5^{12}, or as 282429536481 to 24.4140625 : which is the proportion affigned by Huygens in this particular cafe, but without any Demonftration.

Or more generally:

Let p be the number of the Counters of A, and q the number of the Counters of B; and let the proportion of the Chances be as a to b. I fay that the Probabilities of winning will be refpectively as $a r \times$ $\overline{a^{p}-b^{p}}$ to $b^{p} \times \overline{a^{q}-b^{2}}$; and confequently the Probabilities themfelves will be $\frac{a^{q} \times \overline{a^{p}-b^{q}}}{a^{p+q}-b^{1+q}}=R$, and $\frac{b^{p} \times \overline{a^{q}-b^{q}}}{a^{p+q}-b^{p+q}}=S$.

Demonstration.

Let it be fuppofed that A has the Counters $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \& \mathrm{c}$. whofe number is p, and that B has the Counters $\mathrm{I}, \mathrm{K}, \mathrm{L}, \& \mathrm{c}$. whofe number is q : moreover, let it be fuppofed that the Counters are the thing played for, and that the value of each Counter is to the value of the following as a to b, in fuch manner as that $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{K}$, L be in geometric Progreffion; this being fuppofed, A and B in every circumftance of their Play may lay down two fuch Counters as may be proportional to the number of Chances each has to get a fingle Counter; for in the beginning of the Play, A may lay down the Counter H , which is the loweft of his Counters, and B the Counter I, which is his higheft ; but $\mathrm{H}, \mathrm{I}:: a, b$, therefore A and B play upon equal terms. If A beats B, then A may lay down the Counter I which he has juft got of his adverfary, and B the Counter K ; but $\mathrm{I}, \mathrm{K}:: a, b$, therefore A and B ftill play upon equal terms. But if A lofe the firft time, then A may lay down the Counter G , and B the Counter H , which he juft now got of his adverfary; but $\mathrm{G}, \mathrm{H}:: a, b$, and therefore they ftill play upon equal terms as before: So that, as long as they play together, they play without advantage or difadvantage. Now the Value of the Expectation which A has of getting all the Counters of B is the product
of the Sum he expects to win, and of the probability of obtaining it, and the fame holds alfo in refpect to B : but the Expectations of A and B are fuppofed equal, and therefore the Probabilities which they have refpectively of winning, are reciprocally proportional to the Sums they expect to win, that is, are directly proportional to the Sums they are poffeffed of. Whence the Probability which A has of winning all the Counters of B, is to the Probability which B has of winning all the Counters of A, as the Sum of the terms x_{x} $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$, whofe number is p, to the Sum of the terms $\mathrm{J}, \mathrm{K}, \mathrm{L}$, whofe number is q, that is as $a^{7} \times \overline{a^{p}-b^{p}}$ to $b^{p} \times \overline{a^{q}-b^{p}}$; as will eafily appear if thofe terms, which are in geometric Progreffion, are actually fummed up by the known Methods. Now the Probabilities of winning are not influenced by the Suppofition here made of each Counter being to the following in the proportion of a, to $b ;$ and therefore when thofe Counters are fuppofed of equal value; or rather of no value, but ferving only to mark the number of Stakes; won or loft on either fide, the Probabilities of winning will be the fame as we have affigned.

Corollary i.

If we fuppofe both a and b in a ratio of equality, the expreffions whereby the Probabilities of winning are determined will be reduced to the proportion of p to q : which will eafly appear if thofe expreffions be both divided by $a-b$.

Corollary 2.

If A and B play together for a Guinea a Game, and A has but one fingle Guinea to lofe, but B any number, let it be never fo large; if A in each Game has the Chance of 2 to 1 , he is more likely to win all the Stock of B than to lofe his fingle Guinea; and: juft as likely, if the Stock of B were infinite

REMARK.

If p and q, or either of them be large numbers, it will be convenient to work by Logarithms.

Thus, if A and B play a Guinea a Stake, and the number of Chances which A has to win each fingle Stake be 43, but the number of Chances, which B has to win it, be 40 , and they oblige themfelves to play till fuch time as 100 Stakes are won or loft; (the number p being $=q=100$, and therefore the Ratio fought being $\frac{43}{40} 1^{100}$).

From the logarithm of $43=1.6334685$
Subtract the logarithm of $40=1.6020600$
Difference $=0.0314085$
Multiply this Difference by the number of Stakes to be played off, viz. Ioo, the product will be 3.1408500 , to which anfwers in the Table of Logarithms 138_{3}; therefore the Odds that A beats B are 1383 to I.
Now in all circumftances wherein A and B venture an equal Sum, the Sum of the numbers exprefling the Odds, is to their difference, as the Money played for, is to the Gain of the one, and the Lofs of the other.

Wherefore, multiplying 1382 difference of the numbers expreffing the Odds by 100, which is the Sum ventured by each Man, and dividing the product by 1384 , Sum of the Numbers expreffing the Odds, the Quotient will be, within a triffe, 99 Guineas, and 2 Shillings, fuppofing Guineas at 21 \%.

If inftead of fuppofing the proportion of the Chances whereby A and B may refpectively win a Stake to be as 43 to 40 , we fuppofe them as 44 to 40 , or as 1 i to io, the Expectation of A will be worth above 99 Guineas, 20 Shillings and I Penny.

P R O B L E M VIII.

Two Gamefters A and B lay by 24 Counters, and play wits. three Dice, on this condition; that if I I Points come up, A Ball take one Counter out of the beap; if 14, B fhall take out one; and be ghail be reputed the woimner wobo frall foomeft get 12 Counters.

This Problem differs from the preceding in this, that the Play will be at an end in ${ }_{23}$ Cafts of the Die at moft; (that is, of thofe Cafts which are favourable either to A or B) whereas in the preceding cafe the Counters paffing continually from one hand to the other, it will often happen that A and B will be in fome of the fame circumflances they were in before, which will make the length of the Play unlimited.

Solution.

Taking a and b in the proportion of the Chances which there are to throw II, and I 4 , let $a+b$ be raired to the 23^{d} Power, that ic,
to fuch Power as is denoted by the number of all the Counters wanting one: then fhall the 12 firft terms of that Power be to the 12 laft in the fame proportion as are the Probabilities of winning.

PROBLEM IX.

Suppofing A and B , whofe proportion of fill is as a to b , to play togetber, till A either wins the number q of Stakes, or lofes the number p of them; and that B fets at every Game the Sum G to the Sum L; it is required to find the Advantage or Difadvantage of A.

Solution.

Firft, Let the number of Stakes to be won or loft on either fide be equal, and let that number be p; let there be alfo an equality of fkill between the Gamefters : then I fay that the Gain of A will be $p p \times \frac{G-L}{2}$, that is the fquare of the number of Stakes which either Gamefter is to win or lofe, multiplied by one half of the difference of the value of the Stakes. Thus if A and B play till fuch time as ten Stakes are won or loft, and B fets one and twenty Shillings to 20; then the Gain of A will be roo times the half difference between 21 and 20 Shillings, viz. 50 m.

Secondly, Let the number of Stakes be unequal, fo that A be obliged either to win the number q of Stakes, or to lofe the number p; let there be alfo an equality of Chance between A and $B:$ then I fay that the Gain of A will be $p q \times \frac{\mathrm{G}-\mathrm{L}}{2}$; that is the Product of the two numbers of Stakes, and one half the difference of the value of the Stakes multiplied together. Thus if A and B play together till fuch time as either A wins eight Stakes or lofes twelve, then the Gain of \mathcal{A}, will be the product of the two numbers 8 and 12, and of $6 d$ half the difference of the Stakes, which product makes $2^{2 .} 8 \mathrm{~B}$.

Thirdly, Let the number of Stakes be equal, but let the number of Chances to win a Game, or the Skill of the Gamefters be unequal, in the proportion of a to b; then I fay that the Gain of A will be-$\frac{a^{P}-t^{P}}{a^{P}+b^{P}} \times \frac{\overline{a G-b L}}{a-b}$.

Fourtbly; Let the number of Stakes be unequal, and let alro the number of Chances be unequal: then I fay that the Gain of A will. be $\frac{a^{q} \times \overline{a^{p}-b^{p}}-b^{p} \times \overline{a^{q}-b^{q}}}{a p^{p}+q-b^{p+q}}$ multiplied by $\frac{a G-b \mathrm{~L}}{a-b}$.
D_{E}

Demonstration.

Let R and S refpectively reprefent the Probabilities which A and B have of winning all the Stakes of their Adverfary ; which Probabilities have been determined in the viit Problem. Let us firft fuppore that the Sums depofited by A and B are equal, viz. G, and G : now fince A is either to win the Sum $q G$, or lofe the Sum $p \mathrm{G}$, it is plain that the Gain of A ought to be eftimated by RqG - $s p G$; moreover fince the Sums depofited are G and G, and that the proportion of the Chances to win one Game is as a to b, it follows that the Gain of A for each individual Game is $\frac{a G-b G}{a+b}$; and for the fame reafon the Gain of each individual Game would be $\frac{a G-b L}{a+b}$, if the Sums depofited by A and B were refpectively L and G. Let us therefore now fuppofe that they are L and G ; then in order to find the whole Gain of A in this fecond circumfance, we may confider that whether A and B lay down equal Stakes or unequal Stakes, the Probabilities which either of them has of winning all the Stakes of the other, fuffer not thereby any alteration, and that the Play will continue of the fame length in both circumftances before it is determined in favour of either; wherefore the Gain of each individual Game in the firft cafe, is to the Gain of each individual Game in the fecond, as the whole Gain of the firft cafe, to the whole Gain of the fecond; and confequently the whole Gain of the fecond cafe will be $\overline{\mathrm{Rq}-\mathrm{Sp}} \times \frac{a \mathrm{ai}-b \mathrm{~L}}{=}$, or reftoring the values of R and $\mathrm{S}, \frac{{\frac{p a}{} a^{q} \times \overline{a^{p}-b^{p}}-1 b^{p} \times \overline{a^{q}-b^{q}}}_{a^{i+q}-b^{b}+q}^{a}}{}$ multiplied ly $\frac{a G-b L}{a-b}$.

PR O B L E M X.

Three Perfons A, B, C, out of a beap of 12 Counters, whereof 4 are white, and 8 black, draw blindfold one Counter at a time, in this manner; A begins to draw; B follows A; C follows B; then A begins again; and they continue to draw in the fame order, till one of them who is to be reputel the winner, draws the fir f robite. What are the refpective Probabilities of their winning ?

Solution.
Let n be the number of all the Counters, a the number of white, b the number of black, and I the whole Stake or the Sum played for.
r°. Since A has a Chances for a white Counter, and b Chances for a black, it follows that the Probability of his winning is $\frac{a}{a+b}$ $=\frac{a}{n}$; therefore the Expectation he has upon the Stake $\mathbf{~}$, arifing. from the circumfance he is in, when he begins to draw, is, $\frac{a}{n} \times 1=\frac{a}{n}$: let it therefore be agreed among the Adventurers, that A fhall have no Chance for a white Counter, but that he fhall be reputed to have had a black one, which fhall actually be taken out of the heap, and that he fhall have the Sum $\frac{a}{n}$ paid him out of the Stake, for an Equivalent. Now $\frac{a}{n}$ being taken out of the Stake there will remain $\mathrm{I}-\frac{a}{n}=\frac{n-a}{n}=\frac{b}{n}$.
2°. Since B has a Chances for a white Counter, and that the number of remaining Counters is $n-I$, his Probability of winning will be $\frac{a}{n-1}$; whence his Expectation upon the remaining Stake $\frac{b}{n}$, arifing from the circumflance he is now in, will be $\frac{a b}{n . n-1}$: Suppofe it therefore agreed that B fhall have the Sum $\frac{a b}{n \cdot n-1}$ paid him out of the Stake, and that a black Counter fhall alfo be taken out of the heap. This being done, the remaining Stake will be $\frac{b}{n}-\frac{a b}{n \cdot n-1}$ or $\frac{n b-b-a b}{n \cdot n-1}$, but $n b-a b=b b$; wherefore the remaining Stake is $\frac{b b-1}{n \cdot n-1}$.
3°. Since C has a Chances for a white Counter, and that the number of remaining Counters is $n-2$, his Probability of winning will be $\frac{a}{n-2}$, and therefore his Expectation upon the remaining Stake arifing from the circumftance he is now in, will be $\frac{b \cdot b-1 \cdot a}{n \cdot n-1 \cdot n-2}$, which we will likewife fuppofe to be paid him out of the Stake, ftill fuppofing a black Counter taken out of the heap.
$4^{\circ} . A$ may have out of the remainder the Sum $\frac{b \cdot b-1 \cdot b-2 . a}{n \cdot n-1 \cdot n-2 \cdot n-3}$; and fo of the reft till the whole Stake be exhaufted.

Wherefore having written the following general Series; viz. $\frac{a}{n}+\frac{b}{n-1} \mathrm{P}+\frac{b-1}{n-2} \mathrm{Q}+\frac{b-2}{n-3} \mathrm{R}+\frac{b-3}{n-4} \mathrm{~S}$, \&cc. wherein P, Q, R, S, \&c. denote the preceding Terms, take as many Terms of this Series as there are Units in $b+\mathrm{I}$, (for fince b reprefents the number of black Counters, the number of drawings cannot exceed $b+1$,) then take for A the firt, fourth, feventh, $\& \mathrm{cc}$. Terms; take for B the fecond, fifth, eighth, \&cc. for C the third, fixth, $8 c c$. and the Sums of thofe Terms will be the refpective Expectations of A, B, C; or becaufe the Stake is fixed, thefe Sums will be proportional to the refpective Probabilities of winning.
Now to apply this to the prefent cafe, make $n=12, a=4$, $b=8$, and the general Series will become $\frac{4}{12}+\frac{8}{11} \mathrm{P}+\frac{7}{10} \mathrm{Q}+$ $\frac{6}{9} \mathrm{R}+\frac{5}{8} \mathrm{~S}+\frac{4}{7} \mathrm{~T}+\frac{3}{6} \mathrm{U}+\frac{2}{5} \mathrm{X}+\frac{1}{4} \mathrm{Y}$: or multiplying the whole by 495 to take away the fractions, the Series will be $165-$ $120+84+56+35+20+10+4+1$.
Therefore affigning to $A 165+56+10=231$, to $B 120+$ $35+4=159$, to $C 84+20+1=105$, the Probabilities of winning will be proportional to the numbers $23 \mathrm{I}, 159,105$, or 77 , 53, 35 .
If there be never fo many Gamefters $A, B, C, D, \delta x c$. whether they take every one of them one Counter or more; or whether the fame or a different number of Counters; the Probabilities of winning will be determined by the fame general Series.

REMARKI.

The preceding Series may in any particular cafe be fhortened; for if $a=\mathrm{r}$, then the Series will be $\frac{1}{n} \times \overline{1+1+\mathrm{I}+\mathrm{I}+1+\mathrm{I}+\mathrm{I}}$, \&c.

Hence it may be obferved, that if the whole number of Counters be exactly divifible by the number of Perfons concerned in the Play, and that there be but one fingle white Counter in the whole, there will be no advantage or difadvantage to any one of them from the fituation he is in, in refpect to the order of drawing.
If $a=2$, then the Series will be $\frac{2}{\overline{n \cdot n-1}} \times \overline{\overline{n-1}+\overline{n-2}+\overline{n-3}+\overline{n-4}+\overline{n-5}}$. \&c.

If $a=4$, then the Series will be $\frac{4}{n \cdot n-1 \cdot n-2 \cdot n-3}$ $\times \overline{n-1} \cdot n-2 \cdot n-3+n-2 \cdot \overline{n-3} \cdot n-4, \& c$.
Wherefore rejecting the common Multiplicators; the feveral Terms of thefe Series taken in due order, will be proportional to the feveral Expectations of any number of Gamefters: thus in the cafe of this Problem where $n=12$, and $a=4$, the Terms of the Series will be,

For A
For B
For C

Hence it follows that the Probabilities of winning will be refpectively as $1386,954,63$, or dividing all by 18 , as $77,53,35$, as had been before determined.

REMARK 2.
But if the Terms of the Series are many, it will be convenient to fum them up by means of the following Method, which is an immediate confequence of the fifth Lemma of Sir Ifaac Neroton's Principia, Book III; and of which the Demonftration may be deduced from his Analy/is.

If there be a Series of Terms, A, B, C, D, E, \&c. let each Term be fubtracted from that which immediately follows it, and let the Remainders be called firft Differences, then fubtract each difference from that which immediately follows it, and let the remainders be called fecond differences; again, let each fecond difference be fubtracted from that which immediately follows it, and let the remainders be called third differences, and fo on. Let the firft of the firft Differences be called \dot{d}, the firft of the fecond " , the firft of the third " $d, \& c$. and let x be the interval between the firft Term A, and any other Term, fuch as E, that is, let the number of Terms from A to E, both inclufive, be $x+i$, then the Term $\mathrm{E}=\mathrm{A}+x \dot{d}+\frac{x}{1} \times \frac{x-1}{2} " d+\frac{x \times x-1 \times x-2}{1 \cdot}{ }^{2} \cdot \bar{d}, \& \mathrm{c}$. From hence it manifeftly follows, that let the number of Terms between A and E
be never fo great, if it fọ happen that all the differences of one of the orders are equal to one another, the following differences of all the other orders will all be $=0$; and that therefore the laft Term will be affignable by fo many Terms only of the Series above-written, as are denoted by the firft Difference that happens to be $=0$.

This being premifed, it will be eafy to fhew, how the Sums of thofe Terms may be taken; for if we imagine a new Series whereof the firft Term thall be $=0$; the fecond $=\mathrm{A}$; the third $=\mathrm{A}+\mathrm{B}$; the fourth $=A+B+C$; the fifth $=A+B+C+D$, and fo on; it is plain that the affigning one 'Term of the new Series is finding the Sum of all the Terms A, B, C, D, \&c. Now fince thofe Terms are the differences of the Sums $0, A, A+B, A+B+C, A+$ $B+C+D, \& c$. and that by Hypothefis fome of the differences of A, B, C, D, are $=0$, it follows that fome of the differences of the

Sums will alfo be $=0$; and that whereas in the Series $A+x d+$ $\frac{x}{1} \times \frac{x-1}{2} \ddot{d}$, \&xc. whereby a Term was affigned, A reprefented
the firft Term, \dot{d} the firft of the firft differences, $" d$ the firft of the fecond differences, and that x reprefented the Interval between the firft Term and the laft, we are now to write o inftead of A; A in-
 of x; which being done the Series expreffing the Sums will be $0+\overline{x+1} \times \mathrm{A}+\frac{x+1 \cdot x}{1 \cdot 2} d+\frac{x+1 \cdot x \cdot x-1}{1 \cdot 2 \cdot 3} d$, \&cc. or $\overline{x+1} \times$ $\mathrm{A}+\frac{x}{2} \dot{d}+\frac{x \cdot x-1}{2 \cdot 3} \ddot{d}+\frac{x \cdot x-1 \cdot x-2}{2 \cdot 3 \cdot 4} \ddot{d}, \& \mathrm{c}$. where it will not perhaps be improper to take notice, that the Series by me exhibited in my firf Edition, though feemingly differing from this, is the fame at bottom.

But to apply this to a particular cafe, let us fuppofe that three Perfons A, B, C playing on the fame conditions as are expreffed in this $x^{\text {th }}$ Problem, the whole number of Counters were 100 , inftead of 12, ftill preferving the fame number 4 of white Counters, and that it were required to determine the Expectations of A, B, C.

It is plain from what has been faid in the firf Remark, that the Expectation of A will be proportional to the fum of the numbers
$99 \times 98 \times 97+96 \times 95 \times 94+93 \times 92 \times 91+90 \times 89 \times 88,8 \mathrm{c}$.
that

The Doctrine of Chances.

that the Expectation of B will be proportional to the Sum of the numbers
$98 \times 97 \times 96+95 \times 94 \times 93+92 \times 91 \times 90+89 \times 88 \times 37,8 \mathrm{c}$. and lafly, that the Expectation of C will be proportional to the Sum of the numbers
$97 \times 96 \times 95+94 \times 93 \times 92+91 \times 90 \times 89+88 \times 87 \times 86,8 c c$. But as the number of Terms which conflitute thofe three Series is equal to the number of black Counters increafed by 1 , as it has been obferved before, it follows that the number of all the Terms diftributed among A, B, C, muft be 97 ; now dividing 97 by the number of Gamefters which in this cafe is 3 , the quotient will be 3^{2}; and there remaining 1 after the divifion, it is an indication that 33 Terms enter the Expectation of A, that 32 Terms enter the Expectation of B, and 3^{2} likewife the Expectation of C; from whence it follows that the laft Term of thofe which belong to A will be $3 \times 2 \times 1$, the laft of thofe which belong to B will be $5 \times 4 \times 3$, and the laft of thofe which belong to C will be $4 \times 3 \times 2$.

And therefore if we invert the Terms, making that the firft which was the laft, and take the differences, according to what has been preferibed, as follows;

then the Expectation of A, as deduced from the general Theorem, will be expreffed by
$\overline{x+1} \times \overline{6+\frac{114 x}{2}+\frac{x \cdot x-1}{2 \cdot 3} \times 270+\frac{x \cdot x-1 \cdot x-2}{2 \cdot 3 \cdot 4}} \times 162=$ which being contracted, then reduced into its factors, will be equivalent to

$$
\frac{3}{4} \times \overline{x-1} \times \overline{x+2} \times \overline{3^{x+1}} \times \overline{3^{x}+4}
$$

In like manner, it will be found that the Expectation of B is equivalent to

$$
\frac{3}{4} \times x+1 \times x+2 \times \overline{3 x+5} \times \overline{3^{x}+8}
$$

And that the Expectation of C is equivalent to

$$
=\sqrt{2} \times \overline{x-1} \times \overline{x+2} \times \overline{9 x x+27 x+16} .
$$

Now x in each cafe reprefents the number of Terms wanting one, which belong feverally to A, B, C; wherefore making $x+\mathbf{r}$ $=p$, the feveral Expectations will now be expreffed by the number of Terms which were originally to be fummed up, and which will be as folllows.

$$
\begin{aligned}
& \text { For } A, p \times \overline{p+1} \times \overline{3 p-2} \times \overline{3 p+1} \\
& \text { For } B, p \times p+1 \times \frac{3 p+2}{3 p+1} \\
& \text { For } C, p \times p+1 \times \frac{9 p p+9 p-2}{2}
\end{aligned}
$$

But ftill it is to be confidered, that p in the firft cafe anfwers to the number 33, and in the other two cafes to 3^{2}; and therefore p being interpreted for the feveral cafes as it ought to be, the feveral Expectations will be found proportional to the numbers 41225,39592 , 38008.

If the number of all the Counters were 500 , and the number of the white 1 till 4 , then the number of all the Terms reprefenting the Expectations of A, B, C would be 497 : now this number being divided by 3, the Quotient is 165 , and the remainder 2. From whence it follows that the Expectations of A and B confift of 166 terms each, and the Expectation of C only of 165 , and therefore the loweft Term of all, viz. $3 \times 2 \times 1$ will belong to B, the laft but one $4 \times 3 \times 2$ will belong to A, and the laft but two will belong to C.

PROBLEMXI.

If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ throw in their turns a regular Ball baving 4 white faces and eight black ones; and be be to be reputed the winner who ball firft bring up one of the white faces; it is demanded, what the proportion is of. their refpective Probabilities of winning?

Solution.

The Method of reafoning in this Problem is exactly the fame as that which we have made ufe of in the Solution of the preceding: but wherens the different throws of the Bail do not diminifh the number of its Faces; in the room of the quantities $b-1, b-2$,
$6-3, \& \mathrm{cc} . n-\mathrm{I}, n-2, n-3$, \&cc. employed in the Solution of the aforefaid Problem, we muf fubfitute b and n refpectively, and the Series belonging to that Problem will be changed into the following, which we ought to conceive continued infinitely.

$$
\frac{a}{n}+\frac{a b}{n^{n}}+\frac{a b b}{n^{3}}+\frac{a b^{3}}{n^{4}}+\frac{a b s}{n^{5}}+\frac{a b s}{n^{6}}, \& c .
$$

then taking every third Term thereof, the refpective Expectations: of A, B, C will be expreffed by the following Series,

$$
\begin{aligned}
& \frac{a}{n}+\frac{a b 3}{n^{4}}+\frac{a l^{6}}{n^{7}}+\frac{a b s}{n^{i o}}+\frac{a b^{n}}{n^{13}}, \&<c . \\
& \frac{a b}{n n}+\frac{a b+}{n^{5}}+\frac{a b^{7}}{2^{8}}+\frac{a b^{10}}{n^{11}}+\frac{a b^{13}}{n^{14}}, 8<c \text {. } \\
& \frac{a b b}{n^{3}}+\frac{a t 5}{n^{6}}+\frac{a b^{5}}{n^{9}}+\frac{a^{1+1}}{n^{12}}+\frac{a b^{14}}{n^{15}}, \& \varepsilon c \text {. }
\end{aligned}
$$

But the Terms, whereof each Series is compofed, are in geometric Progreffion, and the ratio of each Term in each Series to the following is the fame; wherefore the Sums of thefe Series are in the fame proportion as their firft Terms, viz. as $\frac{a}{n}, \frac{a b}{n n}, \frac{a b b}{n^{3}}$, or as $n n, b n, b b$; that is, in the prefent cafe, as $144,96,64$, or $9,6,4$. Hence the refpective Probabilities of winning will likewife be as the numbers $9,6,4$.

> Coroliary i.

If there be any other number of Gamefters $A, B, C, D, \& c$. playing on the fame conditions as above, take as many Terms in the proportion of n to b, as there are Gamefters, and thofe Terms will. refpectively denote the feveral Expectations of the Gamefters.

Corollary 2.

If there be any number of Gamefters $A, B, C, D, \& c$. playing on the fame conditionsas above, with this difference only, that all the Faces of the Ball fhall be marked with particular figures $\mathrm{I}, 2,3,4, \& \mathrm{c}$. and that a certain number p of thofe Faces fhall intitle A to be the: winner ; and that likewife a certain number of them, as $q ; r, s, t$, \&cc. Thall refpectively intitle $B, C, D, E, \& \subset c$. to be winners : make: $n-p=a, n-q=b, n-r=c, n-s=d, n-t=e, \& c$. then in the following Series;

$$
\frac{p}{n}+\frac{q a}{n^{n}}+\frac{r a b}{n^{3}}+\frac{\operatorname{sabc}}{n^{+}} \frac{t a b c d}{n^{5}}, \& \bar{c} .
$$

the Terms taken in due order will refpectively reprefent the feveral: Probabilities of winning.

For if the law of the Play be fuch, that every Man having once played in his turn, fhall begin regularly again in the fame manner, and that continually, till fuch time as one of them wins; we are to take as many Tcrms of the Series as there are Gamefters, and thofe Terms will reprefent the refpective Probabilities of winning.

But the Reafon of this Rule will beft appear if we apply it to fome cafy Example.

Let therefore the three Gamefters A, B, C throw a Die of I 2 faces in their Turns; of which 5 faces are favourable to $A, 4$ faces are favourable to B, and the remaining 3 give the Stake to C. Then $p=5$, $q=4, r=3$: and there being but 3 Gamefters, the fame Chances, and in the fame Order A, B, C, will recur perpetually after a Round of three throws, till the Stake is won; or rather, as we fuppofe in the demonftration, till the Stake is totally exhaufted, by each Gamefter, infead of his throw, taking out of it the part to which the chance of that throw entitles him.

Now A having p Chances out of n, or 5 out of 12 , to get the whole Stake at the firt Throw, let him take out of it the Value of this Chance $\frac{p}{n}$; and there will remain $\mathrm{I}-\frac{p}{n}=\frac{n-p}{n}=\frac{a}{n}$ to be thrown for by B.

And B 's Chances for winning in his Throw being q out of n, or 4 out of 12, the Value of his prefent Expectation is $\frac{q}{n} \times \frac{a}{n}=\frac{q a}{n^{2}}$; which if he takes out of the Stake $\frac{n}{n}$ there will remain $\frac{n}{n}-\frac{q z}{n^{2}}=$ $\frac{a}{n} \times \overline{1-\frac{9}{n}}=\frac{a}{n} \times \frac{b}{n}$, to be thrown for by C.

His Chances for getting this Stake being r out of n, or 3 out of I 2 , the Value of his Expectation is $\frac{r a b}{n^{3}}$; which he may take out of the Stake $\frac{a b}{n^{2}}:$ and refign the Die to A, who begins the fecond Round.

Eut if, for the Stakes that remain after the firft, fecond, third, \&c. Rounds, we write $R^{\prime}, R^{\prime \prime}, R^{\prime \prime \prime}$, \&c. refpectively, it is manifeft that the Valuc of a Gameffer's Chance in each Round is proportional to the Stake $\mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}, \mathrm{R}^{\prime \prime \prime}$, \&cc. which remained to the beginning of that Round. Thus the Value of \mathcal{A} 's firft Throw having been $\frac{p}{n} \times 1$, the Value of his fecond will be $\frac{p}{n} \times \mathrm{R}^{\prime}$, of his third, $\frac{p}{n} \times \mathrm{R}^{\prime \prime}$, \&cc. And the Value of B^{\prime} s firft Throw having been $\frac{q r}{n^{2}} \times \mathrm{I}$, that of his fecond will $\frac{q \pi}{n^{2}} \times \mathrm{R}^{\prime}$, of his third, $\frac{q a}{n^{2}} \times \mathrm{R}^{\prime \prime}$, \&cc. and the like ior the feveral Expectations of C.

Put $S=\mathrm{I}+\mathrm{R}^{\prime}+\mathrm{R}^{\prime \prime}+\mathrm{R}^{\prime \prime \prime}$, \&cc. and the Total of $A^{\prime} \mathrm{s}$ Expectations will be $\frac{p}{n} \times S$; of $B, \frac{q q}{n^{2}} \times S$; of $C, \frac{r a b}{n^{3}} \times S$: or rejecting the common Factor S, the Expectations of A, B, C, at the beginning of the Play will be as $\frac{p}{n}, \frac{\eta a}{n^{2}}, \frac{r a b}{n^{3}}$, refpectively : that is as the 3 firft Terms of the Series. And the like reafoning will hold, be the Number of Gamefters, their favourable Chances, or order of Throwing, what you will.

In the prefent Example, $\frac{p}{n}=\frac{5}{12}=\frac{720}{1728} ; \frac{q a}{n^{2}}=\frac{28}{144}=$ $\frac{336}{1728} ; \frac{r a b}{n^{3}}=\frac{168}{1728}$: and the Chances of A, B, C, refpectively, are as the Numerators $720,336,168$; that is, as $30,14,7$. or the whole Stake being 51 pieces, A can claim 30 of them, $B 14$, and C the remaining 7 .

In making up this Stake, the Gamefters A, B, C, were, at equal play, to contribute only in proportion to their Chances of winning; that is in the proportion of p, q, r, or $5,4,3$, refpectively: and, before the Order of throwing was fixt, their Chances muft have been exactly worth what they paid in to the Stake: What gives A the great advantage now is, an antecedent good luck of being the firft to throw. If B had been the firft; or if A, taking his firft Throw, had mift of a p face, then B 's Chance had been the better of the two.

And if it were the Law of Play that every Man fhould play feveral times together, for inftance twice : then taking for A the two firft Terms, for B the two following, and fo on; each couple of Terms will reprefent the refpective Probabilities of winning, obferving now that p and q are equal, as alfo r and s.

But if the Law of Play fhould be irregular, then you are to take for each Man as many Terms of the Series as will anfwer that irregularity, and continue the Series till fuch time as it gives a fufficient Approximation.

Yet if, at any time, the Law of the Play having been irregular, fhould afterwards recover its regularity, the Probabilities of winning, will (with the help of this Series) be determined by finite expreffions.
Thus if it hould be the Law of the Play, that two Men A and B having played irregularly for ten times together, tho' in a manner agreed on between them, they fhould alio agree that after ten throws, they fhould play alternately each in his turn : diftribute the ten firft Terms of the Series between them, according to the order fixed upon by their convention, and having fubtracted the Sum of thofe Terms
from Unity, divide the remainder of it between them in the proportion of the two following Terms, which add refpectively to the Shares they had before; then the two parts of Unity which A and B have thus 'obtained, will be proportional to their refpective Probabilities of winning.

PROBLEM XII.

There are any number of Gamefters, who in their Turns, which are decided by Lots, turn a Cuibe, baving 4 of its Faces marked T, P, D, A, the other two Faces which are oppofite bave each a little Knob or Pivet, about which the Cube is made to turn; the Gamefters each lay doren a Sum agreed upon, the firft begins to turn the Cube; now if the Face T be brought up, be fweeps all the Money upon the Board, and then the Play begins anew; if any other Face is brougbt up, be yields bis place to the next Man, but with this difference, that if the Face P comes up, be, the firft Man, puts down as much Money as there was upon the Board; if the Face D comes up, be neither takes up any Money nor lays down any; if the Face A comes up, be takes up balf of the Money upon the Board; when every Man bas played in bis Turn upon the fame conditions as above, there is a recurrency of Order, whereby the Board may be very much enlarged, viz. if it So bappen that the Face T is intermitted during many Trials: now the Quefion is this; when a Gamefter comes to bis İurn, Juppofing bim afraid of laying down as much Money as there is already, which may be confiderable, bow muft be compound for bis Expectation with a Spectator willing to take bis place.

Solution.

Let us fuppofe for a little while that the number of Gamefters is infinite, and that what is upon the Board is the Sum f; then, there
there being I Chance in 4 for the Face T to come up, it follows that the Expectation of the firft Man, upon that fcore, is $\frac{1}{4}$ 2°. There being I Chance in 4 for the Face P to come up, whereby he would neceffarily lofe \int, (by reafon that the number of Gamefters having been fuppofed infinite, his Chance of playing would never return again) it follows that his Lofs upon that account ought to be eftimated by $\frac{1}{4} \int$. 3°. There being I Chance in 4 for the Face D to come up, whereby he would neither win or lofe any thing, we may proceed to the next Chance. 4°. There being I Chance in 4 for the Face A to come up, which intitles him to take up $\frac{1}{2} \int$, his Expectation, upon that account, is $\frac{1}{8} \int$, or fuppofing $8=n$, his Expectation is $\frac{1}{n} \int$; now out of the four cafes abovementioned the firt and fecond do deftroy one another, the third neither contributes to Gain or Lofs, and therefore the clear Gain of the firf Man is upon account of the fourth Care ; let it therefore be agreed among the Adventurers, that the firf Man fhall not try his Chance, but that he fhall take the Sum $\frac{1}{n}$ fout of the common Stake f, and that he fhall yield his Turn to the next Man.

But.before I proceed any farther, it is proper to prevent an Objection that may be made againft what I have afferted above, viz. that the Face D happening to come up, the Adventurer in that cafe would lofe nothing, becaure it might be faid that the number of Gamefters being infinite, he would neceffarily lofe the Stake he has laid down at firtt; but the anfwer is eafy, for fince the number of particular Stakes is infinite, and that the Sum of all the Stakes is fuppofed only equal to \int, it follows that each particular Stake is nothing in comparifon to the common Stake \int, and therefore that common Stake may be looked upon as a prefent made to the Adventurers. Now to proceed; I fay that the Sum $\frac{1}{n} \int$ having been taken out of the common Stake \int, the remaining Stake will be $\frac{n-1}{n} \int$ or $\frac{d}{J}$, fuppofing $n-1=d$: but by reafon that the firft Man was allowed $\frac{1}{p}$ part of the common Stake, fo ought the next Man to be allowed $\frac{1}{n}$ part of the prefent Stake $\frac{d}{n} \int$, which will make it that the Expectation of the fecond Man will be $\frac{d}{n n} \mathcal{S}$; Again, the Expec-
tation of the fecond Man being to the Expectation of the firf as $\frac{d}{n}$ to I , the Expectation of the third muft be to the Expectation of the fecond alfo as $\frac{d}{n}$ to I , from whence it follows that the Expectation of the third Man will be $\frac{d d}{n^{3}} \int$, and the Expectation of the fourth $\frac{d^{3}}{n^{4}} /$, and fo on; which may fitly be reprefented by the Series \int into $\frac{1}{n}+\frac{d^{2}}{n n}+\frac{\frac{3}{d}}{n^{3}}+\frac{\frac{4}{n^{3}}}{n^{4}}+\frac{\frac{5}{n^{3}}}{n^{5}}+\frac{d^{6}}{n^{0}}$, \&cc. Now the Sum of that infinite Series, which is a Geometric Progreffion, is $\frac{f}{n-d}$, but d having been fuppofed $=n-\mathrm{I}$, then $n-d=\mathrm{I}$, and therefore the Sum of all the Expectations is only \int, as it ought to be.
Now let us fuppofe that inftead of an infinite number of Gamefters, there are only two; then, in this cafe, we may imagine that the firt Man has the firf, third, fiftb, leventh Terms of that Series, and all thofe other Terms in infinitum which belong to the odd places, and that the fecond Man has all the Terms which belong to the even places; wherefore the Expectation of the firft Man is $\frac{f}{n}$ into $\mathrm{I}+\frac{d d}{n n}+\frac{d^{4}}{n^{4}}+\frac{d^{6}}{n^{6}}+\frac{d^{3}}{n^{8}}$, \&cc. and the Expectation of the fecond is $\frac{d d}{n n}$ into $1+\frac{d d}{n n}+\frac{d^{4}}{n^{4}}+\frac{d^{6}}{n^{6}}+\frac{d^{8}}{n^{8}}, 8 \mathrm{cc}$. and therefore the Ratio of their Expectations is as $\frac{f}{n}$ to $\frac{d f}{n n}$, or as I to $\frac{d}{n}$, that is as n to $n-1$, or as 8 to 7 ; and therefore the Expectation of the firft Man is $\frac{8}{15} \int$, and the Expectation of the fecond Man is $\frac{7}{15} \int$; and therefore if a Spectator has a mind to take the place of the firft Man, he ought to give him $\frac{8}{15} \int$.

But if the number of Gamefters be three, take a third proportional to n and d, which will be $\frac{d d}{n}$, and therefore the three Expectations will be refpectively proportional to $n, d, \frac{d d}{n}$, or to m, $d n, d d$, and therefore the Expectation of the firt Man is $\frac{n n}{n n+d n+d d} \delta$ which in this cafe is $=\frac{6_{1}}{109} \mathrm{f}$.
Univerfally, Let p be the number of Adventurers, then the Sum for which the Expectation of the firft Man may be transferred to another is $\frac{n^{p-1}}{n^{P}-d^{p}}$.

The Doctrine of Chances.

The Game of Bassette.
Rules of the Play.
The Dealer, otherwife called the Banker, holds a pack of 52 Cards, and having fhuffled them, he turns the whole pack at once, fo as to difcover the laft Card; after which he lays down by couples all the Cards.

The Setter, otherwife called the Ponte, has 13 Cards in his hand, one of every fort, from the King to the Ace, which I_{3} Cards are called a Book; out of this Book he takes one Card or more at pleafure, upon which he lays a Stake.

The Ponte may at his choice, either lay down his Stake before the pack is turned, or immediately after it is turned; or after any number of Couples are drawn.

The firft cafe being particular, fhall be calculated by itfelf ; but the other two being comprehended under the fame Rules, we thall begin with them.
Suppofing the Ponte to lay down his Stake after the Pack is turned, I call $\mathrm{I}, 2,3,4,5$, \&c. the places of thofe Cards which follow the Card in view, either immediately after the pack is turned, or after any number of couples are drawn.
If the Card upon which the Ponte has laid a Stake comes out int any odd place, except the firft, he wins a Stake equal to his own.

If the Card upon which the Ponte has laid a Stake comes out in any even place, except the fecond, he lofes his Stake.
If the Card of the Ponte comes out in the firft place, he neither wins nor lofes, but takes his own Stake again.
If the Card of the Ponte comes out in the fecond place, he does not lofe his whole Stake, but only a part of it, viz. one half, which to make the Calculation more general we fhall call y. In this cafe the Ponte is faid to be Faced.
When the Ponte chufes to come in after any number of Couples are down; if his Card happens to be but once in the Pack, and is the very laft of all, there is an exception from the general Rule; for tho' it comes out in an odd place, which fhould intitle him to win a Stake equal to his own, yet he neither wins nor lofes from that circum-ftance, but takes back his own Stake.

PROBLE M XIII.

To eftimate at Baffette the Lofs of the Ponte under any circumftance of Cards remaining in the Stock, when be lays bis Stake; and of any number of times that bis Card is repeated in the Stock.

The Solution of this Problem containing four cafes, viz. of the Ponte's Card being once, twice, three or four times in the Stock; we fhall give the Solution of all thefe cafes feverally.

Solution of the firf Cafe.
The Ponte has the following chances to win or lofe, according to the place his Card is in.

Chance for lofing Chance for lofing Chance for winning	

It appears by this Scheme, that he has as many Chances to win I as to lofe 1 , and that there are two Chances for neither winning or lofing, viz. the firt and the laft, and therefore that his only Lofs is upon account of his being Faced: from which it is plain that the number of Cards covered by that which is in view being called n, his Lofs will be $\frac{y}{n}$, or $\frac{1}{2 n}$, fuppofing $y=\frac{1}{2}$.

SOLUTION of the fecond Care.
By the firft Remark belonging to the $\mathrm{x}^{\text {th }}$ Problem, it appears ψ that the Chances which the Ponte has to win or lofe are proportional to the numbers, $n-1, n-2, n-3$, \&c. Wherefore his Chances for winning and lofing may be expreffed by the following Scheme.

[^4]

Now fetting afide the firft and fecond number of Chances, it will be found that the difference between the 3^{d} and $4^{\text {th }}$ is $=\mathrm{I}$, that the difference between the $5^{\text {th }}$ and $6^{\text {th }}$ is alfo $=\mathrm{I}$, and that the difference between the $7^{\text {th }}$ and $8^{\text {th }}$ is alfo $=\mathrm{I}$, and fo on. But the number of differences is $\frac{n-3}{2}$, and the Sum of all the Chances is $\frac{n}{1} \times \frac{n-1}{2}$: wherefore the Gain of the Ponte is $\frac{n-3}{n \times n-1}$. But his Lofs upon account of the Face is $\overline{n-2} \times y$ divided by $\frac{n \times n-1}{1 \times 2}$ that is $\frac{\frac{2 n-4 \times y}{n \times n-1}}{n \times \text { : hence it is to be concluded that his Lofs upon the }}$ whole is $\frac{\frac{2 n-4}{} \frac{4 \times y-\overline{n-3}}{n \times n-1}}{}$ or $\frac{1}{n \times n-1}$ fuppofing $y=\frac{1}{2}$.

That the number of differences is $\frac{n-3}{2}$ will be made evident from two confiderations.

Firft, the Series $n-3, n-4, n-5, \& c$. decreafes in Arithmetic Progreffion, the difference of its terms being Unity, and the laft Term alfo Unity, therefore the number of its Terms is equal to the firf Term $n-3$: but the number of differences is one half of the number of Terms; therefore the number of differences is $\frac{n-3}{2}$.

Secondly, it appears, by the $x^{\text {th }}$ Problem, that the number of all the Terms including the two firf is always $b+1$, but a in this cafe is $=2$, therefore the number of all the Terms is $n-1$; from which excluding the two firft, the number of remaining Terms will be $n-3$, and confequently the number of differences $\frac{n-3}{2}$.

That the Sum of all the Terms is $\frac{n}{1} \times \frac{n-1}{2}$, is evident alro. from two different confiderations.

Firft in any Arithmetic Progreffion whereof the firt Term is $n-1$, the difference Unity, and the laft Termalfo Unity, the Sum of the Progreffion will be $\frac{n}{1} \times \frac{n-1}{2}$.
Secondly, the Series $\frac{2}{u \times n-1} \times \overline{\overline{n-1}+\overline{n-2}+\overline{n-3}}$, \&c. mentioned in the firft Remark upon the tenth Problem, expreffes the Sum of the Probabilities of winning which belong to the feveral Gamefters in the cafe of two white Counters, when the number of all the Counters is n. It therefore expreffes likewife the Sum of the Probabilities of winning which belong to the Ponte and Banker in the prefent cafe : but this Sum muft always be equal to Unity, it being a certainty that the Ponte or Banker muft win; fuppofing therefore that $n-1+n-2+n-3,8<c$. is $=S$, we fhall have the Equation $\frac{2 S}{n \times n-1}=\mathrm{I}$, and therefore $\mathrm{S}=\frac{n}{1} \times \frac{n-1}{2}$.

Solution of the third Cafe.

By the firf Remark of the tenth Problem, it appears that the Chances which the Ponte has to win and lofe, may be expreffed by the following Scheme.

Setting afide the firft, fecond, and laft number of Chances, it will be found that the difference between the $3^{\text {d }}$ and $4^{\text {th }}$ is $2 n-8$; the difference between the $5^{\text {th }}$ and $6^{\text {th }}, 2 n-12$; the difference between the $7^{\text {th }}$ and $8^{\text {hh }}, 2 n-16$, \&c. Now thefe differences conAtitute an Arithmetic Progreffion, whercof the firft Term is $2 n-8$, the common difference 4 , and the laft Term 6 , being the difference between 4×3 and 3×2. Wherefore the Sum of this Progreffion is $\frac{n-1}{1} \times \frac{n-5}{2}$, to which adding the laft Term 2×1, which is favourable to the Ponte, the Sum total will be $\frac{n-3}{1} \times \frac{n-3}{2}$: but the
the Sum of all the Chances is $\frac{n}{2} \times \frac{n-1}{1} \times \frac{n-2}{3}$, as may becollected from the firf Remark of the $x^{\text {th }}$ Probiem, and the lant Faragraph of the fecond cafe of this Problem: therefore the Gain of the Ponte is $\frac{3: n-3 \cdot n-3}{2 \cdot n \cdot n-1 \cdot n-2}$. But his Lofs upon account of the Face is $\frac{3 \cdot n-2 \cdot n-3 \cdot y}{n \cdot n-1 \cdot n-2}$ or $\frac{3 y \cdot n-3}{n \cdot n-1}$, therefore his Lofs upon the whole is $\frac{3 y \cdot n-3}{n \cdot n-1}-\frac{3 \cdot n-3 \cdot n-3}{2 \cdot n \cdot 2-1 \cdot n-2}$; or $\frac{3^{n-9}}{2 \cdot n \cdot n-1 \cdot n-2}$ fuppofing $y=\frac{1}{2}$.

Solution of the fourtb Care.
The Chances of the Ponte may be expreffed by the following Scheme.

	n
2	$n-2 \times n-3 \times n-4$ for lofing
4	$n-4 \times n-5 \times n-6$ for lofing
5	$5 \times n-6 \times n-7$ for winnin
6	$n-6 \times n-7 \times n-8$ for lofing
	$n-7 \times n-8 \times n-9$ for winning
	\times I for lofing

Setting afide the firt and fecond numbers of Chances, and taking the differences between the 3^{d} and $4^{\text {th }}, 5^{\text {th }}$ and $6^{\text {th }}, 7^{\text {th }}$ and $8^{\text {th }}$, the laft of thefe differences will be found to be 18 . Now if the number of thofe differences be p, and we begin from the laft 18, their Sum, from the fecond Remark of the $\mathrm{x}^{\text {th }}$ Problem, will be found to be $p \times \overline{p+1} \times \overline{4 p+5}$, but p in this cafe is $=\frac{n-5}{2}$, and therefore the Sum of thefe differences will eafily appear to be $\frac{n-5}{2} \times \frac{n-3}{2} \times \frac{2 n-5}{1}$, but the Sum of all the Chances is $\frac{n}{1} \times \frac{n-1}{1} \times \frac{n-2}{1} \times \frac{n-3}{4}$; wherefore the Gain of the Ponte is $\frac{n-5 \cdot n-3 \cdot 2 n-5}{n \cdot n-1 \cdot n-2 \cdot n-3}$: now his Lofs upon account of the Face is $\frac{n-2 \cdot n-3 \cdot n-1 \cdot 4\rangle}{n \cdot n-1 \cdot n-2 \cdot n-3}$, and therefore his Lofs upon the whole will be $\frac{n-4 \cdot 47}{n \cdot n-1}-\frac{n-5 \cdot 2 n-5}{n \cdot n-1 \cdot n-2}$ or $\frac{3^{3 n-9}}{n \cdot n=1 \cdot n-2}$, fuppofing $y=\frac{1}{2}$.

There

There fill remains one fingle cafe to be confidered, viz. what the Lofs of the Ponte is, when he lays a Stake before the Pack is turned up : but there will be no difficulty in it, after what we have faid ; the difference between this cafe and the reft being only, that he is liable to be faced by the firt Card difcovered, which will make his Lofs to be $\frac{3^{n-6}}{n \cdot n-1 \cdot n-3}$, that is, interpreting n by the number of all the Cards in the Pack, viz. 52 , about $\frac{1}{866}$ part of his Stake.

From what has been faid, a Table may eafily be compofed, fhewing the feveral Loffes of the Ponte in whatever circumftance he may happen to be.

The Doctrine of Chances.
A Table for Bassette.

N	1	2	3	4
52	* **	***	** *	866
51	* * *	* * *	1735	867
49	98	2352	1602	801
47	94	2162	147	737
45	90	1980	I351	675
43	86	1806	1234	617
41	82	1640	1122	56 r
39	78	14	1015	507
37	74	133^{2}	914	457
35	70	1190	818	409
33	66	1056	727	363
$3{ }^{1}$	62	930	642	321
29	58	812	562	281
27	54	702	48	243
25	50	600	418	209
23	46	506	354	177
2 I	42	420	295	147
19	3^{8}	342	242	121
17	34	272	194	97
15	30	210	15^{1}	75
13	26	${ }^{1} 5$	114	57
II	22	110	82	4 I
9	18	72	56	28
7	14	42	35	17

The

The ufe of this Table will be beft explained by fome Examples.
Example i.
Let it be propofed to find the Lo/s of the Ponte, woben there are 26
Cards remaining in the Stock, and bis Card is twice in it.
In the Column N find the number 25 , which is lefs by ithan the number of Cards remaining in the Stock: over-againft it, and under the number 2 , which is at the head of the fecond Column, you will find 600 ; which is the Denominator of a fraction whofe Numerator is Unity, and which fhews that his Lofs in that circumftance is one part in fix hundred of his Stake.

ExAMPLE 2.

To find the Lo/s of the Ponte woben there are eight Cards remaining in the Stock, and bis Card is three times in it.

In the Column N find the number 7 , lefs by one than the number of Cards remaining in the Stock : over-againft 7, and under the number 3 , written on the top of one of the Columns, you will find 35, which denotes that his Lofs is one part in thirty-five of his Stake.

Corollary i.

'Tis plain from the conftruction of the Table, that the fewer Cards are in the Stock, the greater is the Lofs of the Ponte.

$$
\text { COROLLARY } 2 .
$$

The leaft Lofs of the Ponte, under the fame circumftances of Cards remaining in the Stock, is when his Card is but twice in it ; the next greater but three times; ftill greater when four times; and the greateft when but once. If the Lofs upon the Face were varied, 'tis plain that in all the like circumftances, the Lofs of the Ponte would vary accordingly; but it would be eafy to compofe other Tables to anfwer that variation; fince the quantity y, which has been affumed to reprefent that Lofs, having been preferved in the general expreffion of the Loffes, if it be inte:preted by $\frac{2}{3}$ inftead of $\frac{1}{2}$, the Lofs, in that cafe, would be as eafiy determined as in the other: thus fupporing that 8 Cards are remaining in the Stock, and that the Card of the Ponte is twice in it, and alfo that y fhould be interpreted
interpreted by $\frac{2}{3}$, the Lofs of the Ponte would be found to be $\frac{4}{63}$ inftead of $\frac{1}{4^{2}}$.

The Game of Pharaon.

The Calculation for Pbaraon is much like the preceding, the reafonings about it being the fame; it will therefore be fufficient to lay down the Rules of the Play, and the Scheme of Calculation.

Rules of the Play.
Firft, the Banker holds a Pack of 52 Cards.
Secondly, he draws the Cards one after the other, and lays them down at his right and left-hand alternately.

Tbirdly, the Ponte may at his choice fet one or more Stakes upon one or more Cards, either before the Banker has begun to draw the Cards, or after he has drawn any number of couples.

Fourtbly, the Banker wins the Stake of the Ponte, when the Card of the Ponte comes out in an odd place on his right-hand ; but lofes as much to the Ponte when it comes out in an even place on his left-hand.

Fiftbly, the Banker wins half the Ponte's Stake, when it happens to be twice in one couple.

Sixtbly, when the Card of the Ponte being but once in the Stock, happens to be the laft, the Ponte neither wins nor lofes.

Seventbly, the Card of the Ponte being but twice in the Stock, and the laft couple containing his Card twice, he then lofes his whole Stake.

PR O B L E M XIV.

To find at Pharaon the Gain of the Banker in any circumftance of Cards remaining in the Stock, and of ithe: number of times that the Ponte's Cards is contained: in it.

This Problem having four Cafes, that is, when the Ponte's Card is once, twice, three, or four times in the Stock; we Thall give the: Solution of thefe four cafes feverally.

Solution of the firft Cafe.
The Banker has the following number of Chances for winning and lofing.

I	I	Chance for winning	I
2	I	Chance for lofing	I
3	I	Chance for winning	I
4	I	Chance for lofing	I
5	I Chance for winning	I	
*	I	Chance for lofing	o

Wherefore, the Gain of the Banker is $\frac{1}{n}$, fuppofing n to be the number of Cards in the Stock.

Solution of the fecond Cafe.
The Banker has the following Chances for winning and lofing.

The Gain of the Banker is therefore $\frac{\overline{n-2} \cdot y}{n \cdot n-1}+\frac{2}{n \cdot n-1}$, or $\frac{\frac{1}{2} n+1}{n \cdot n-1}$ fuppofing $y=\frac{1}{2}$.

The only thing that deferves to be explained here, is this; how it comes to pafs, that whereas at Baffette, the firft number of Chances for winning was reprefented by $n-1$, here 'tis reprefented by $n-2$; to anfwer this, it mult be remembered, that according to the Law
of this Play, if the Ponte's Cards come out in an odd place, the Banker is not thereby entitled to the Ponte's whole Stake : for if it fo happens that his Card comes out again immediately after, the Banker wins but one half of it ; therefore the number $n-1$ is divided into two parts, $n-2$ and 1 , whereof the firft is proportional to the Probability which the Banker has for winning the whole Stake of the Ponte, and the fecond is proportional to the Probability of winning the half of it.

Solution of the third Cafe.
The number of Chances which the Banker has for winning and lofing, are as follow :

Wherefore the Gain of the Banker is $\frac{2 y}{2 \cdot n-1}$, or $\frac{3}{4 \cdot n-1}$ fuppofing $y=\frac{1}{2}$:

The number of Chances for the Banker to win, is divided into two parts, whereof the firft expreffes the number of Chances he has for winning the whole Stake of the Ponte, and the fecond for winning. the half of it.

Now for determining exactly thofe two parts, it is to be confidered, that in the firft couple of Cards that are laid down by the Banker, the number of Chances for the firft Card to be the Ponte's is $n-\mathbf{I} \times n-2$; alfo, that the number of Chances for the fecond to be the Ponte's, but not the firft, is $n-2 \times n-3$: wherefore the number of Chances for the firft to be the Ponte's, but not the fecond, is likewife $n-2 \times n-3$. Hence it follows, that if from

80 The Doctrine of Chances. the number of Chances for the firt Card to be the Ponte's, viz: from $n-1 \times n-2$, there be fubtracted the number of Chances for the firt to be the Ponte's, and not the fecond, viz. $n-2 \times n-3$, there will remain the number of Chances for both firft and fecond Cards to be the Ponte's, viz. $2 \times n-2$, and fo for the reft.

> SOLUTION of the fourth Cafe.

The number of Chances which the Banker has for winning and lofing, are as follow :

	$\left\{\begin{aligned} & n-2 \times n-3 \times n-4 \text { for winni } \\ & 3 \times n-2 \times n-3 \text { for winni } \\ & n-2 \times n-3 \times n-4 \text { for lofing } \end{aligned}\right.$
	$4 \times n-5 \times n-6$ for winn
3	$3 \times n-4 \times n-5$ for winni
4	$n-4 \times n-5 \times n-6$ for lofing
	$6 \times n-7 \times n-8$ for
	$\left\{\begin{array}{r}3 \times n-6 \times n-7 \text { for winning } \\ n-6 \times n-7 \times n-8 \text { for lofing }\end{array}\right.$
	$5 n-8 \times n-9$
	$\times n-8 \times n-9$ for winning
8	$-8 \times n-9 \times n-10$ for lofing
	$2 \times \quad 1$ for win

Wherefore the Gain of the Banker, or the Lofs of the Ponte, is $\frac{2 n-5}{n-1 \cdot n-3} y$ or $\frac{2 n-5}{2 \times n-1 \cdot n-3}$ fuppofing y to be $=\frac{1}{2}$.

It will be eafy, from the general expreffions of the Loffes, to compare the difadvantage of the Ponte at Baffette and Pbaraon, under the fame circumftances of Cards remaining in the hands of the Banker, and of the number of times that the Ponte's Card is contained in the Stock; but to fave that trouble, I have thought fit here to annex a Table of the Gain of the Banker, or Lofs of the Ponte, for any particular circumftance of the Play, as it was done for Bafette.

The Doctrine of Chances.
A Table for Pharaon.

The

The numbers of the forégoing Table, as well as thofe of the Table for Baffette; are fafficiently exact to give at firf view an idea of the advantage of the Banker inl aill circumftances, and the Method of ufing it is the fame as that which was given for Baflette. It is to be obferved at this Play, that the learf difadvantage of the Ponte, under the fame circumftances of Cards remaining in the Stock, is when the Card of the Ponte is but twice in it, the next greater when three times, the next when once, and the greateft when four times.

Of Permutations and Combinations.

Permutations are the Changes which feveral things can receive in the different orders in which they may be placed, being confidered as taken two and two, three and three, four and four, © ©c.

Combinations are the various Conjunctions which feveral things may receive without any refpect to order, being taken two and two, three and three, four and four.

The Solution of the Problems that relate to Permutations and Combinations depending entircly upon what has been faid in the $8^{\text {th }}$ and $9^{\text {th }}$ Articles of the Introduction, if the Reader will be pleafed to confult thofe Articles with attention, he will eafily apprehend the reafon of the Steps that are taken in the Solution of thofe Problems.

PROBLEM XV.

Any number of things a, b, c, d, e, f, being given, out of which two are taken as it bappens: to find the Probability that any of them, as a, hall be the firft taken, and any other, as b , the fecond.

Soluttion.

The number of Things in this Example being fix, it follows that the Probability of taking a in the firf place is $\frac{1}{6}$: let a be confidered as taken, then the Probability of taking b will be $\frac{1}{5}$; wherefore the Probability of taking a, and then b, is $\frac{1}{6} \times \frac{1}{5}=$ $\frac{1}{30}:$

Corollary.

Since the taking a in the firf place, and b in the fecond, is but one fingle Cafe of thofe by which fix Things may change their order, being taken two and two ; it follows that the number of Changes or Permutations of fix Things, taken two and two, muft be 30 .

Univerfaly; let n be the number of Things; then the Probability of taking a in the firft place, and b in the fecond will be $\frac{1}{n} \times \frac{1}{n-1}$; and the number of Permutations of thofe Things, taken two and two, will be $n \times n-\mathrm{I}$.

P R O BLEM XVI.

Any number of Things a, b, c, d, e, f, being given, out of which tbree are taken as it bappens; to find the Probability that a Joall be the firft taken, b the fecond, and c the third.

SOLUTION.
The Probability of taking a in the firft place is $\frac{1}{6}$: let a be confidered as taken, then the Probability of taking b will be $\frac{1}{5}$: fuppofe now both a and b taken, then the Probability of taking c will be $\frac{1}{4}$: wherefore the Probability of taking firt a, then b, and thirdly c, will be $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}=\frac{1}{120}$.

Corollary.

Since the taking a in the firft place, b in the fecond, and c in the third, is but one fingle Cafe of thofe by which fix Things may change their Order, being taken three and three ; it follows, that the number of Changes or Permutations of fix Things taken three and three, muft be $6 \times 5 \times 4=120$.
Univerfally, if n be the number of Things; the Probability of taking a in the firft place; b in the fecond, and c in the third, will be $\frac{1}{n} \times \frac{1}{n-1} \times \frac{1}{n-2}$; and the number of Permutations of n Things taken three and three, will be $n \times n-1 \times n-2$.

General Corollary.
The number of Permutations of n things, out of which as many are taken together as there are Units in p, will be $n \times n-1 \times$ $n-2 \times n-3$, \& c. continued to fo many Terms as there are Units in p.

Thus the number of Permutations of fix Things taken four and four, will be $6 \times 5 \times 4 \times 3=360$, likewife the number of Permutations of fix Things taken all together will be $6 \times 5 \times 4 \times 3 \times 2 \times$ $1=720$.

P R O B L E M XVII.

To find the Probability that any number of things, whereof fome are repeated, fsall all be taken in any order propofed: for inftance, that aabbbcccc fsall be taken in the order wherein they are written.

SOLUTION.
The probability of taking a in the firf place is $\frac{2}{9}$; fuppofe one a to be taken, the Probability of taking the other is $\frac{1}{8}$. Let now the two firf Letters be fuppofed taken, the Probability of taking b will be $\frac{3}{7}$: let this be alfo fuppofed taken, the Probability of taking another b will be $\frac{2}{6}$: let this be fuppofed taken, the Probability of taking the third b will be $\frac{1}{5}$; after which there remaining nothing but the Letter c, the Probability of taking it becomes a certainty, and confequently is expreffed by Unity. Wherefore the Probability of taking all thofe Letters in the order given is $\frac{2}{9} \times \frac{1}{8} \times \frac{3}{7} \times \frac{2}{6} \times \frac{1}{5} \times \frac{1}{1}=\frac{1}{1260}$.

Corollary 1.

The number of Permutations which the Letters aabbbccce may receive being taken all together will be $\frac{9: 8 \cdot 7 \cdot 6 \cdot 5 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1 \cdot 1}=1260$.

Corollary 2.
The fame Letters remaining, the Probability of the Letters being taken in any other given Order will be juft the fame as before:
thus the Probability of thofe Letters being taken in the order cabacccbb. will be $\frac{1}{1200}$.

General Corollary.

The number of Permutations which any number n of Things: may receive being taken all together, whereof the firt Sort is repeated. p times, the fecond q times, the third r times, the fourth s times, \&cc. will be the Series $n \times n-1 \times n-2 \times n-3 \times n-4$, \&cc. continued to fo many Terms as there are Units in $p+q+r$ or $n-s$. divided by the product of the following Series, viz. $p \times p-1 \times p-2$, $\& c . q \times q-1 \times q-2$, \&c. $r \times r-1 \times r-2, \& c$. whereof the firt muft be continued to fo many Terms as there are Units in p, the fecond to fo many Terms as there are Units in q, the third to fo: many as there are Units in r, \&c.

PROBLEM XVIII.

Any number of Things a, b, c, d, e, f, being given: to find the Probability that in taking two of them as it may bappen, both a and b hall be taken, without any regard to order.

Solution.

The Probability of taking a or b in the firft place will be $\frac{2}{6}$; fuppofe one of them taken, as for inftance a, then the Probability. of taking b will be $\frac{1}{5}$. Wherefore the Probability of taking both a and b will be $\frac{2}{6} \times \frac{1}{5}$.

Corollary.

The taking of both a and b is but one fingle Cafe of all thofe by which fix Things may be combined two and two; wherefore the number of Combinations of fix Things taken two and two will be: $\frac{6}{8} \times \frac{5}{2}$.

Univerfally. The number of Combinations of n Things taken two and two will be $\frac{n}{1} \times \frac{n-1}{2}$.

P R O B L E M XIX.

Any number of things $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ being given, to find the Probability that in taking three of them as they happen, they flall be any three propofed, as a, b, c, no refpeet being bad to order.

Solution.

The Probability of taking either a, or b, or c, in the firt place, will be $\frac{3}{6}$; fuppofe one of them as a to be taken, then the Probability of taking either b or c in the fecond place will be $\frac{2}{5}$: again, let either of them be taken, fuppofe b, then the Probability of taking c in the third place will be $\frac{1}{4}$; wherefore the Probability of taking the three things propofed, viz. a, b, c, will be $\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4}$.

Corolyary.

The taking of a, b, \dot{c}, is but one fingle cafe of all thofe by which fix Things may be combined three and three; wherefore the number of Combinations of fix Things taken three and three will be $\frac{6}{1} \times \frac{5}{2} \times \frac{4}{3}=20$.

Univerfally. The number of Combinations of n things combined according to the number p, will be the fraction $\frac{n \cdot n-1 \cdot n-2 \cdot n-3 \cdot n-4}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}$ \&cc. both Numerator and Derrominator being continued to fo many Terms as there are Units in p.

> PROBLEM XX.

To find what Probability there is, that in takizg at random. Seven Counters out of tweloe, whereof four are white and eight black, three of them Joall be white ones.

Solution.
Firft, Find the number of Chances for taking three white out of four, which will be $\frac{4}{1} \times \frac{3}{2} \times \frac{2}{3}=4$.

The Doctrine of Chances.

Secondly, Find the number of Chances for taking four black out of eight: there Chances will be found to be $\frac{8}{1} \times \frac{7}{2} \times \frac{6}{3} \times \frac{5}{4}$ $=70$.

Thirdly, Becaure every one of the firft Chances may be joined with every one of the latter, it follows that the number of Chances for taking three white, and four black, will be $4 \times 70=280$.

Fourthly, Altho' thie cafe of taking four white and three black, be not mentioned in the Problem, yet it is to he underfood to be implyed in it ; for according to the Law of Play, he who does more than he undertakes, is fill reputed a winner, unlefs the contrary be exprefly ftipulated; let therefore the cafe of taking four white out of four be calculated, and it will be found $\frac{4}{1} \times \frac{3}{2} \times \frac{2}{3} \times \frac{1}{4}$ $=1$

- Fiftbly, Find the Chances fur taking three black Counters out of eight, which will be found to be $\frac{8}{1} \times \frac{7}{2} \times \frac{6}{3}=56$.

Sixtbly, Multiply the two laft numbers of Chances together, and the Product 56 will denote the number of Chances for taking four white and three black.

And therefore the whole number of Chances, which anfwer to the conditions of the Problem, are $280+56=336$.
There remains now to find the whole number of Chances for taking feven Counters out of twelve, which will be $\frac{12}{1} \times \frac{11}{2} \times$ $\frac{10}{3} \times \frac{9}{4} \times \frac{8}{5} \times \frac{7}{6} \times \frac{6}{7}=792$.
Lafly, Divide therefore 336 by 792, and the Qnotient $\frac{336}{792}$ or $\frac{14}{33}$ will exprefs the Probability required; and this Fraction being fubtracted from Unity, the remainder will be $\frac{19}{33}$, and therefore the Odds againft taking three white Counters are 19 to 14.

Coroleary.

Let a be the number of white Counters, b the number of black, n the whole number of Counters $=a+b, c$ the number of Counters to be taken out of the number n; let alfo p reprefent the: number of white Counters to be found precifely in c, then the number of Chances for taking none of the white, or one fingle white, or
two white and no more, or three white and no more, or four white and no more, \&cc. will be expreffed as follows;

$$
1 \times \frac{a}{1} \times \frac{a-1}{2} \times \frac{a-2}{i} \times \frac{a-3}{4}, \& c c \times \frac{b}{1} \times \frac{b-1}{2} \times \frac{b-2}{3}, \& c .
$$

The number of Terms in which a enters being equal to the number p, and the number of Terms in which b enters being equal to the number $c-p$.

And the number of all the Chances for taking a certain number c of Counters out of the number n, is expreffed by the Series $\frac{n}{1} \times \frac{n-1}{2} \cdot \frac{n-2}{3} \times \frac{n-3}{4}$, \&c. to be continued to as many Terms as there are Units in c, for a Denominator.

Examples.

Suppofe as in the laft problem; only that of the 7 Counters drawn, there fhall not be one white. In this Cafe, fince $p=0$, and $c-$ $p=7=b-\mathrm{I}$: we are to take I of the firt Series, and 7 (or 1) Terms of the fecond; which gives the number of Chances 1×8; the Ratio of which to all the 7 's that can be taken out of 12 , is $\frac{8}{79^{2}}=\frac{1}{99}$. So that there is the Odds of 98 to I , that there Mall be one or more white Counters among the 7 that are drawn.

Again, if there is to be I white Counter and no more, we are now to take the Terms $\times \frac{a}{1} \ldots \times \frac{b}{1} \times \frac{b-1}{2} \times \frac{b-2}{3} \times \frac{b-3}{4} \times \frac{b-4}{5}$ $\times \frac{b-5}{6}=4 \ldots \times \frac{8}{1} \times \frac{7}{2} \times \frac{6}{3} \times \frac{5}{4} \times \frac{4}{5} \times \frac{3}{6}=4 \times \frac{8 \times 7}{2}=\frac{112}{}:$ Which gives the probability $\frac{112}{79^{2}}=\frac{11}{99}$; or the odds 85 to 14 ; that there fhall be more than I white Counter, or that all the 7 fhall be black.

Lafly, If it is undertaken to draw all the 4 white among the feven, the Number of Chances will be $1 \times \frac{8}{1} \times \frac{7}{2} \times \frac{6}{3}=56$. And the Probability $\frac{56}{79^{2}}=\frac{7}{99}$; that is, the Odds of 92 to 7 that there fhall be, of the 7 drawn, fewer than 4 white Counters, or none at all.

> Remark.

If the numbers n and c were large, fuch as $n=40000$ and $c=8000$, the foregoing Method would feem impracticable, by reafon of the vaft number of Terms to be taken in both Series, whereof the firft is to be divided by the fecond: tho' if thofe Terms
were actually fet down, a great many of them being common Di vifors might be expunged out of both Series; for which reafon it will be convenient to ufe the following Theorem, which is a contraction of that Method, and which will be chiefly of ufe when the white Counters are but few.

Let therefore n be the number of all the Counters; a the number of white; c the number of Counters to be taken out of the number $n ; p$ the number of the white that are to be taken precifely in the number c; then making $n-c=d$. The Probability of taking precifely the number p of white Counters, will be
$c . c-\mathrm{I}, c-2, \& c \mathrm{c} \times d . d-1 \cdot d-2, \& \mathrm{c} . \times \frac{a}{1} \times \frac{a-1}{2} \times \frac{a-2}{3}, \& \mathrm{c}$.
$n \cdot n-1 \cdot n-2 \cdot n-3 \cdot n-4 \cdot n-5 \cdot n-6 \cdot n-7 \cdot n-8, \& c$.
Here it is to be obferved, that the Numerator confifts of three Series which are to be multiplied together ; whereof the firft contains as many Terms as there are Units in p; the fecond as many as there are Units in $a-p$; the third as many as there are Units in p; and the Denominator as many as there are Units in a.

PR O B L E M XXI.

In a Lottery confifing of 40000 Tickets, among which are three particular Benefits, what is the Probability that taking 8000 of them, one or more of the particular Benefits fisall be among/t them.

Solution.

Firft, In the Theorem belonging to the Remark of the foregoing Problem, having fubftituted refpectively $8000,40000,32000,3$ and 1 , in the room of c, n, d, a, and p; it will appear that the Probability of taking one precifely of the three particular Benefits, will be $\frac{8-00 \cdot 22000 \cdot 21099 \cdot 2}{40000 \cdot 3099 \cdot 3599^{8}}=\frac{48}{125}$ nearly.

Secondly, c, n, d, a being interpreted as before, let us fuppofe $p=2$: hence the Probability of taking precifely two of the particular Benefits will be found to be $\frac{8000-000 \cdot 32 r 00 \cdot{ }^{2}}{40000 \cdot 39949 \cdot 39998}=\frac{12}{125}$ nearly.

Thirdly, making $p=3$, the Probability of taking all the three particular Benefits will be found to be $\frac{8000 \cdot 7999 \cdot 7998}{40000 \cdot 39999 \cdot 39998}=\frac{1}{125}$.

Wherefore the Probability of taking one or more of the three particular Benefits will be $\frac{4 \delta+12+1}{125}$ or $\frac{61}{125}$ very near.
It is to be obferved, that thofe three Operations might have been contracted into one, by inquiring the Probability of not taking any of the three particular Benefits, which will be found to be $\frac{32000 \cdot 21999 \cdot 3 \text { 19008 }}{40000 \cdot 39999 \cdot 3999^{8}}=\frac{6_{4}}{125}$ nearly, which being fubtracted from Unity, the remainder $1-\frac{64}{125}$ or $\frac{61}{125}$ will fhew the Probability required, and therefore the Odds againft taking any of three particular Benefits will be 64 to 61 nearly.

PROBLEM XXII.

To find bow many Tickets ought to be taken in a Lottery confifing of 40000, among which are Three particular Benefits, to make it as probable that one or more of thofe Three may be taken as not.

SOLUTION.

Let the number of Tickets requifite to be taken be $=x$; it will follow therefore from the Remark belonging to the $\mathrm{xx}^{\text {th }}$ Problem, that the Probability of not taking any of the particular Benefits will be $\frac{n-x}{n} \times \frac{n-x-1}{n-1} \times \frac{n-x-2}{n-2}$; but this Probability is equal to $\frac{1}{2}$, fince by Hypothefis the Probability of taking one or more of them is equal to $\frac{1}{2}$, 'from whence we fhall have the Equation $\frac{n-x}{n} \times \frac{n-x-1}{n-1} \times \frac{n-x-2}{n-2}=\frac{1}{2}$, which Equation being folved, the Value of x will be found to be nearly 825^{2}.
N. B. The Factors whercof both the Numerator and Denominator are compofed, being but few, and in arithmetic progreffion; and befides, the difference being very fmall in refpect of n; thofe Terms may be confidered as being in geometric Progreffion: wherefore the Cube of the middle Term $\frac{n-x-1}{n-1}$, may be fuppofed equal to the product of the Multiplication of thofe Terms; from whence

The Doctrine of Chances.

whenee will arife the Equation $\frac{\frac{x-x-i n}{n-13}}{n-1}=\frac{1}{2}$; or, neglecting Unity in both Numerator and Denominator, $\frac{\overline{n-x^{3}}}{n^{3}}=\frac{1}{2}$ and confequently x will be found to be $=n \times \overline{1-\sqrt{\frac{1}{2}}}$ or $n \times$ ${ }_{\mathrm{I}}-\frac{1}{2} \sqrt[3]{4}$, but $n=40000$, and $\mathrm{I}-\frac{1}{2} \sqrt[3]{4}=0.2063$; wherefore $x=825$.

In the Remark belonging to the fecond Problem, a Rule was given for finding the number of Tickets that were to be taken to make it as probable, that one or more of the Benefits would be taken as not; but in that Rule it was fuppofed, that the proportion of the Blanks to the Prizes was often repeated, as it ufually is in Lotteries : now in the cafe of the prefent Problem, the particular Benefits being but three in all, the remaining Tickets are to be confidered as Blanks in refpect of them ; from whence it follows, that the proportion of the number of Blanks to one Prize being, very near as 1333^{2} to 1 , and that proportion being repeated but three times in the whole number of Tickets, the Rule there given would not have been fufficiently exact, for which reafon it was thought neceffary to give another Rule in this place.

> PROBLEM XXIII.

Suppofing a Lottery of 100000 Tickets, whereof 90000 are Blanks, and 10000 are Benefits, to determine accurately what the odds are of taking or not taking a Benefit, in any number of Tickets affigned.

SOLUTION.

Suppofe the number of Tickets to be 6 ; then let us inquire into the Probability of taking no Prize in 6 Tickets, which to find let us make ufe of the Theorem fet down in the Corollary of the $\mathrm{xx}^{\text {th }}$. Problem, wherein it will appear that the number of Chances for taking no Prize in 6 Tickets, making $a=10000, b=90000, c=6$, $p=0, n=100000$, will be

$$
\frac{90000}{1} \times \frac{89990}{2} \times \frac{89998}{3} \times \frac{80997}{4} \times \frac{89996}{5} \times \frac{80995}{6},
$$

and that the whole number of Chances will be

$$
\frac{100000}{2^{2}} \times \frac{99999}{2} \times \frac{99998}{3} \times \frac{99907}{\mathrm{~N}_{2}^{4}} \times \frac{99996}{5} \times \frac{99995}{6} ; \text { then }
$$ decimal fraction being fubtracted from Unity, the Remainder 0.46857 thews the Probability of taking one Prize or more in 6 Tickets; wherefore the Odds againft taking any Prize in 6 Tickets, will be 53143 to 46857.

If we fuppofe now that the number of Tickets taken is 7 , then carrying each number of Chances above-written one flep farther, we fhall find that the Probability of taking no Prize in 7 Tickets is 0.47828 , which fraction being fubtracted from Unity, the remainder will be 0.52172 , which fhews the Odds of taking one Prize or more in 7 Tickets to be 52172 to 47828 .

REMARK.

When the number of Tickets taken bear a very inconfiderable proportion to the whole number of Tickets, as it happens in the cafe of this Problem, the Queftion may be refolved as a Problem depending on the Caft of a Die : we may therefore fuppofe a Die of 10 Faces having one of its Faces fuch as the Ace reprefenting a Benefit, and all the other nine reprefenting Blanks, and inquire into the Probability of miffing the Ace 6 times together, which by the Rules given in the Introduction, will be found to be $\frac{9^{6}}{10^{6}}=0.53144$ differing from what we had found before but one Unit in the fifth place of Decimals. And if we inquire into the Probability of miffing the Ace 7 times, we fhall find it 0.47^{829} differing alfo but one Unit in the fifth of Decimals, from what had been found before, and therefore in fuch cafes as this we may ufe both Methods indifferently; but the firf will be exact if we actually multiply the numbers together, the fecond is only an approximation.

But both Methods confirm the truth of the practical Rule given in our third Problem, about finding what number of Tickets are neceffary for the equal Chánce of a Prize; for multiplying as it is there directed, the number 9 reprefenting the Blanks by 0.7 , the Product 6.3 will thew that the number requifite is between 6 and 7 .

PROBLEM XXIV.

The fame things being given as in the preceding Problem, Suppofe the price of each Ticket to be 10 L. and that after the Lottery is drawom, $7^{\text {L. }}-10^{\text {/h. }}$ be returned

The Doctrine of Chances.

to the Blanks, to find in this Lottery the value of the Chance of a Prize.

Solution.

There being 90000 Blanks, to every one of which $7^{L}-10 /$. is returned, the total Value of the Blanks is 675000 L and confequently the total Value of the Benefits is 325000 L . which being divided by 10000 , the number of the Benefits, the Quotient is 32 L . -10β; and therefore one might for the Sum of $3^{2 L}$. $-10 / \beta$ be intitled to have a Benefit certain; taken at random out of the whole number of Benefits: the Purchafer of a Chance has therefore 1 Chance in io for the Sum of $3^{L L}$ - 10^{β} and 9 Chances in io for lofing his Money; from whence it follows, that the value of his Chance is the $10^{\text {th }}$ part of $3^{\mathrm{LL}}-10$ 有 that is $3^{\mathrm{L}}-5^{\mathrm{J}}$. And therefore the Purchafer of a Chance, by giving the Seller ${ }_{3} L$. - $5^{/ 3}$. is intitled to the Chance of a Benefit, and ought not to return any thing to the Seller, altho' he fhould have a Prize; for the Seller having $3.5^{L /}$. fure, and 9 Chances in $1 \circ$ for 7^{L}. - $10 / \beta$. the Value of which Chances is 6 L . $\mathrm{I}^{\mathrm{h} / \mathrm{h}}$; it follows that he has his 10 . ${ }^{L}$.

P R O B L E M XXV.

Suppofing fill the fame Lottery as bas been mentioned inn the two preceding Problems, let A engage to furnibs B with a Cbance, on condition that whenever the Ticket on which the Cbance depends, frall bappen to be drawen, whether it proves a Blank or a Prize, A Jall furnifs B with a new Cbance, and So on, as often as there is occafion, till the whole Lottery be drawn; to find what confideration B ought to give A before the Lottery begins to be drawn, for the Cbance or Cbances of one or more Prizes, admitting that the Lottery will be 40 days a drawing.

Solution.
Let $3^{L .}-5^{/ 3}$, which is the abfolute Value of a Chance, be called s.
1°. A who is the Seller ought to confider, that the firft Day, he furnifhes neceflarily a Chance whofe Value is s.
2°. That the fecond day, he does not neceffarily furnifh a Chance, but conditionally, viz. if it fo happen that the Ticket on which the Chance depends, fhould be drawn on the firft day; but the Probability of its being drawn on the firft day is $\frac{1}{40}$; and therefore he ought to take $\frac{1}{40} s$ for the confideration of the fecond day.
3°. That in the fame manner, he does not neceffarily furninh a Chance on the third day, but conditionally, in cafe the only Ticket depending (for there can be but one) fhould happen to be drawn on the fecond day ; of which the Probability being $\frac{1}{39}$, by reafon of the remaining 39 days from the fecond inclufive to the laft, it follows, that the Value of that Chance is $\frac{1}{39} \mathrm{~s}$.
4°. And for the fame reafon, the Value of the next is $\frac{1}{3^{8}} s$, and fo on.
The Purchafer ought therefore to give the Seller
$1+\frac{1}{40}+\frac{1}{39}+\frac{1}{3^{8}}+\frac{1}{37} \ldots . . .{ }^{1}-\frac{1}{2}$, the whole multiplied by s, or

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6} \ldots \ldots+\frac{1}{40} \text {, the whole }
$$

multiplied by s. Now it being pretty laborious to fum up thofe 4° Terms, I have here made ufe of a Rule which I have given in the Supplement to my Mifcellanca Analytica *, whereby one may in a very thort time fum up as many of thofe Terms as one pleafes, tho' they were ioooo or more; and by that Rule, the Sum of thofe 40 Terms will be found to be 4.2785 very near, which being multiplied by which in this care is 3.25 , the product 13.9 will fhew that the Purchafer ought to give the Seller about $\mathrm{I}^{L} \mathrm{~L}-18 \mathrm{\beta}$.

Coroleray.

The Value of the Chance s for one fingle day that fhall be fixed upon, is the Value of that Chance divided by the number of Days intercepted between that Day inclufive, and the number of Days remaining to the end of the Lottery : which however muft be underftood with this reffriction, that the Day fixed upon muft be chofe before the Lottery begins ; or if it be done on any other Day, the State
of the Lottery mult be known, and a new Calculation made accordingly for the Value of s.

* SCHOLIUM.

If there is a Series of Fractions of this Form $\frac{1}{n}+\frac{1}{n+1}+$ $\frac{1}{n+2}+\frac{1}{n+3}+\frac{1}{n+4} \ldots \ldots+\frac{1}{a-1}$; the firft of which is $\frac{1}{n}$, and the laft $\frac{1}{a-1}$; their Sum will be, $\log . \frac{a}{n}+\frac{1}{2 n}+\frac{1}{2 n^{2}} \mathrm{~A}+\frac{1}{4 n^{4}} \mathrm{~B}+\frac{1}{6 n^{6}} \mathrm{C}+\frac{1}{8 n^{8}} \mathrm{D}+8 \mathrm{c}$: Where it is $-\frac{1}{2 a}+\frac{1}{2 a^{2}} \mathrm{~A}+\frac{1}{4 a^{4}} \mathrm{~B}+\frac{1}{6 a^{6}} \mathrm{C}+\frac{1}{8 a^{8}} \mathrm{D}+\& \mathrm{c}$.
to be obferved,
\mathbf{I}°. That the mark (log.) denoting Neper's, or the Natural, Logarithm, affects only the firft Term $\frac{a}{n}$.
2°. That the Values of the Capital Letters are, $A=\frac{1}{6}, B=$ $-\frac{1}{30} \mathrm{C}=+\frac{1}{4^{2}}, \mathrm{D}=-\frac{1}{30}, \mathrm{E}=+\frac{5}{66}$, \&xc. being the numbers of Mr. James Bernoulli in his excellent Theorem for the Summing of Powers; which are formed from each other as follows;
$A=\frac{1}{2}-\frac{1}{3}$
$B=\frac{1}{2}-\frac{1}{5}-\frac{4}{2} A$.
$\mathrm{C}=\frac{1}{2}-\frac{1}{7}-\frac{6}{2} \mathrm{~A}-\frac{6 \cdot 5 \cdot 4}{2 \cdot 3 \cdot 4} \mathrm{~B}$.
$\mathrm{D}=\frac{1}{2}-\frac{1}{9}-\frac{8}{2} \mathrm{~A}-\frac{8 \cdot 7 \cdot 6}{2 \cdot 3 \cdot 4} \mathrm{~B}-\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \mathrm{C}$.
$\mathrm{E}=\frac{1}{2}-\frac{1}{11}-\frac{10}{2} \mathrm{~A}-\frac{10 \cdot 9 \cdot 8}{2 \cdot 3 \cdot 4} \mathrm{~B}-\frac{10 \cdot 0 \cdot 8 \cdot 7 \cdot 6}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \mathrm{C}-\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8} \mathrm{D}$. \&c.
3°. In working by this Rule, it will be convenient to fum a few of the firf terms, in the common way; that the powers of $\frac{1}{n}$ may the fooner converge.
4°. The fame Rule furnifhes an eafy Computation of the Logarithm of any ratio $\frac{a}{n}$, the difference of whofe terms is not very: great.

PR O B L E M XXVI.

To find the Probability of taking four Hearts, three Diamonds, two Spades, and one Club in ten Cards out of a Stock containing thirty-two.

Solution.

Firft, The number of Chances for taking four Hearts out of the whole number of Hearts that are in the Stock, that is out of Eight, will be $\frac{8 \cdot 7 \cdot 6 \cdot 5}{1 \cdot{ }^{2} \cdot \dot{b}^{3} \cdot 4}=70$.

Secondly, The number of Chances for taking three Diamonds out of Eight, will be ${ }^{8} \times \frac{7 \cdot 6}{1^{2} \cdot 3}=56$.

Thirdly, The number of Chances for taking two Spades out of Eight, will be $\frac{8 \cdot 7}{1 \cdot 2}=28$.

Fourtbly, The number of Chances for taking one Club out of Eight, will be $\frac{8}{1}=8$.

And therefore multiplying all thofe particular Chances together, the product $70 \times 56 \times 28 \times 8=878080$ will denote the whole number of Chances for taking four Hearts, three Diamonds, two Spades, and one Club.

Fifthly, The whole number of Chances for taking any ten Cards out of thirty-two is

$$
\frac{37 \cdot 31 \cdot 30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25 \cdot 24 \cdot 23}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10}=64512240 .
$$

And therefore dividing the firft Product by the fecond, the quotient $\frac{878080}{04512240}$ or $\frac{1}{75}$ nearly, will exprefs the Probaioility required; from which it follows that the Odds againft taking four Hearts, three Diamonds, two Spades, and one Club in ten Cards, out of a Stock containing thirty-two, are very near 74 to 1 .
REMARK.

But if the numbers in this Problem had not been reftricted each to a particular fuit of Cards ; that is, if it had been undertaken only that in drawing the ten Cards, 4 of them fhould be of one fuit, 3 of another, 2 of another, and one of the fourth; then writing for the four fuits, the Letters $A \cdot B . C . D$; and under them the Numbers
$4 \cdot 3 \cdot 2 \cdot 1$; fince this
is but one Pofition out of 24 , which the numbers can have with refpect to the Letters (by the general Corollary to Prob. xvi) we muft now multiply the number of Chances before found, which was 878080 , by 24 ; and the probability required will be $\frac{2107392}{6451224}$; that is, it is the Odds of about 2 to I, or very nearly of 68 to 33 , that of 10 Cards drawn out of a Piquet pack four, three, two, and one, thall not be of different fuits.

Of the Game of. Quadrile e.

P R O B L E M XXVII.

The Player baving 3 Matadors and three other Trumps by the loweft Cards in black or red, what is the Probability of bis forcing all the Trumps?

Solution.

In order to folve this Problem, it is to be confidered, that the Player whom I call A forces the Trumps neceffarily, if none of the other Players whom I call B, C, D, has more than three Trumps ; and therefore, if we calculate the Probability of any one of them having more than three Trumps, which care is wholly againft A_{0} we may from thence deduce what will be favourable to him ; but let us firft fuppofe that he plays in black.

Since the number of Trumps in black is II, and that A by fuppofition has 6 of them, then the number of Trumps remaining amongft B, C, D is 5 ; and again, fince the number of all the other remaining Cards, which we may call Blanks, is 29 , whereof A has 4, it follows that there are 25 Blanks amongf B, C, D; and therefore the number of Chances for B in his io Cards to have 4 Trumps and 6 Blanks, is by the Corollary of the $\mathrm{xx}^{\text {th }}$ Problem.

$$
\frac{5 \times 4 \times 3 \times 2}{1 \cdot 2 \cdot 3 \cdot 4} \times \frac{25 \cdot 24 \cdot 23 \cdot 22 \cdot 21 \cdot 20}{1 \cdot)^{2} \cdot 3 \cdot 5 \cdot 6}
$$

And likewife the number of Chances for his having 5 Trumps and 5 Blanks, is by the fame Corollary.

$$
\frac{5 \cdot 4 \cdot 2 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \times \frac{25 \cdot 24 \cdot 23 \cdot 22 \cdot 21}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}
$$

And therefore the number of all the Chances of B againf A is $106 \times 5 \times 7 \times 11 \times 23$: but the number of Chances whereby any 10 Cards may be taken out of 30 is $\frac{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25 \cdot 24 \cdot 23 \cdot 22 \cdot 21}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9}$. which being reduced to $5 \times 7 \times 9 \times 11 \times 13 \times 23 \times 29$, it follows that the Probability of B 's having more than three Trumps is $\frac{106 \times 5 \cdot 7 \cdot 11 \cdot 23}{3)^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 23 \cdot 29}=\frac{106}{9 \times 13 \cdot 29}$: but this Probability falls as well upon C and D as upon B, and therefore it ought to be multiplied by 3 , which will make it $\frac{106}{3 \times 13 \times 29}=\frac{106}{1131}$; and this being fubtracted from Unity, the remainder $\frac{1025}{1131}$ will exprefs the Probability of A 's forcing all the Trumps; and therefore the Odds of his forcing the Trumps are 1025 againft 106, that is 29 to 3 nearly.

But if A plays the fame Game in red, his advantage will be confiderably lefs than before; for there being 12 Trumps in red, whereof he has $6, B$ may have 4 , or 5 , or 6 of them, fo that the number of the Chances which B has for more than three Trumps will be refpectively as follows:

$$
\begin{aligned}
& \quad \begin{array}{l}
6 \times 5 \times 4 \cdot 3 \\
1 \cdot 2 \cdot 3 \cdot 4 \\
\\
\\
\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}
\end{array} \times \frac{24 \cdot 23 \cdot 22 \cdot 21 \cdot 20 \cdot 19}{1 \cdot 2 \cdot 3 \cdot 23 \cdot 22 \cdot 21 \cdot 5 \cdot 6} \\
& \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \times \frac{24 \cdot 23 \cdot 22 \cdot 4 \cdot 5}{1 \cdot 2: 3 \cdot 4}
\end{aligned}
$$

Now the Sum of all thofe Chances being $215 \times 23 \times 22 \times 21$, and the Sum of all the Chances for taking any 10 Cards out of 30 , being $5 \times 7 \times 9 \times 11 \times 13 \times 23 \times 29$, as appears by the preceding cafe, it follows, that the Probability of B 's having more than three Trumps is $\frac{215 \cdot 23 \cdot 22 \cdot 21}{5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 23 \cdot 29}=\frac{86}{3 \cdot 13 \cdot \dot{R}^{29}}$; but this Probability falling as well upon C and D, as upon B, ought to be multiplied by 3 , which will make it $\frac{86}{13 \cdot 29}=\frac{86}{377}$; and this being fubtracted from Unity, the remainder $\frac{291}{377}$, will exprefs the Probability of \boldsymbol{A} 's forcing all the Trumps; and therefore the Odds of his forcing all the Trumps is in this cafe 291 to 86, that is nearly 10 to 3.

PROBLE M XXVIII.

The Player A baving Spadille, Manille, King, Queen, and two fmall Trumps in black, to find the Probability of bis forcing all the Trumps.

Solution.
A forces the Trumps neceffarily, if Bafe accompanied with two other Trumps be not in one of the Hands of B, C, D, and as Bafte ought to be in fome Hand, it is indifferent where we place it; let it therefore be fuppofed that B has it, in confequence of which let us confider the number of Chances for his having befides Bafte,

$$
\begin{array}{lll}
\text { 10. } & 2 \text { Trumps and } 7 \text { Blanks. } \\
2^{\circ} & 3 \text { Trumps and } 6 & \text { Blanks. } \\
3^{\circ} & 4 \text { Trumps and } 5 & \text { Blanks. }
\end{array}
$$

Now the Blanks being in all 29 , whereof A has 4, it follows that the number of remaining Blanks is 25 ; and the number of Trumps being in all II, whereof A has 6 by Hypothefis, and B has I , viz. Bafte, it follows that the number of remaining Trumps is 4 ; and therefore the Chances which B has againft the Player are refpectively as follows:

$$
\begin{aligned}
& \frac{4 \cdot 3}{1 \cdot 2} \times \frac{25 \cdot 24 \cdot 23 \cdot 22 \cdot 21 \cdot 20 \cdot 19}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} \\
& \frac{4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3} \times \frac{25 \cdot 24 \cdot 23 \cdot 22 \cdot 21 \cdot 20}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \\
& \frac{4 \cdot 3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3 \cdot 4} \times \frac{25 \cdot 24 \cdot{ }^{2} \cdot 22 \cdot 22 \cdot 21}{4 \cdot 2}
\end{aligned}
$$

The Sum of all which is $1441 \times 5 \times 23 \times 22$; but the Sum of all the Chances whereby B may join any 9 Cards to the Bafte which he has already is $\frac{29 \times 28 \times 27 \cdot 26 \cdot 25 \cdot 24 \cdot 23 \times 22 \cdot 21}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}=29 \times 7 \times 3 \times$ $13 \times 5 \times 23 \times 11$. and therefore the Probability of Bafte being in one Hand, accompanied with two Trumps at leaft, is expreffed by the Fraction $\frac{144 \cdot \cdot 5 \cdot 23 \cdot 22}{29 \cdot 7 \cdot 3 \cdot 13 \cdot 5 \cdot{ }^{23} \cdot{ }^{11}}=\frac{131 \cdot 22}{29 \cdot 7 \cdot 3 \cdot 13}=\frac{2882}{7917}$ and this being fubtracted from Unity, the remainder will be $\frac{5035}{7917}$, and therefore the Odds of A 's forcing the Trumps are 5035 to 2882 , which are very near 7 to 4 .

100 The Doctrine of Chances.
But if it be in red, A has the fmall difadvantage of 19703 againft 19882, or nearly 110 againft 111 .
It is to be noted in this Propofition, that it is not now neceffary to multiply by 3 ; by reafon that B reprefents indeterminately any one of the three B, C, D : elfe if the cafe of having Bafe was determined to B in particular, his probability of having it would only be $\frac{1}{3}$: fo that the Chances afterwards being multiplied by 3 , the Solution would be the fame.

P R O B L E M XXIX.

The Player baving Spadille, Manille, and 5 other Trumps more by the loweft in red, what is the Probability, by playing Spadille and Manille, of his forcing 4 Trumps?

> SOLUTION.

The 5 remaining Trumps being between B, C, D, their various difpofitions are the following:

B,	C,	D
1,	2,	2
2,	3,	0
3,	1,	1
4,	1,	0
5,	0,	0

Which muft be underftood in fuch manner, that what is here affigned to B may as well belong to C or D.

Now it is plain, that out of thofe five difpofitions there are only the two firt that are favourable to A; let us therefore fee what is the Probability of the firft difpofition.

The number of Chances of B to have I Trump and 9 Blanks are $\frac{5}{8} \times \frac{25 \cdot 24 \cdot 23 \cdot 22 \cdot 21 \cdot 20 \cdot 19 \cdot 18 \cdot 17}{1 \cdot 2 \cdot \frac{3}{2} \cdot 5 \cdot 0 \cdot 7 \cdot 8 \cdot 9}=5 \times 5 \times 5 \times 11 \times 17$ $\times 19 \times 23$, but the number of all the Chances whereby he may take any 10 Cards out of 30 , is $5 \times 7 \times 9 \times 11 \times 13 \times 23 \times 29$ as has been feen already in one of the preceding Problems ; and therefore the Probability of B's having one Trump and nine Blanks is $\frac{5: 5 \cdot 5 \cdot 11 \cdot 17 \cdot 19 \cdot 23}{5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 23 \cdot 29}=\frac{25 \cdot 19 \cdot 17}{7 \cdot 9 \cdot 13 \cdot 29}$.

Now in order to find the number of Chances for C to have 2 Trumps and 8 Blanks, it muft be confidered that A having 7 Trumps, and $B 1$, the number of remaining Trumps is 4 ; and likewife that A having 3 Blanks, and $B 9$, the number of remaining Blanks is 16 , and therefore that the number of Chances for C to have 2 Trumps and 8 Blanks is

$$
\frac{4 \cdot 3}{1 \cdot 2} \times{ }_{16}^{16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}=6 \times 9 \times 10 \times \text { II } \times 13
$$

But the number of all the Chances whereby C may take any to Cards out of 20 remaining between him and D, is

$$
\frac{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10}=4 \times 11 \times 13 \times 17 \times 19
$$

and therefore the Probability of C 's having 2 Trumps and 8 Blanks is

$$
\frac{6 \cdot 9 \cdot 10 \cdot 11 \cdot 13}{4 \cdot 11 \cdot 13 \cdot 17 \cdot 19}=\frac{6 \cdot 9 \cdot 10}{4 \cdot 17 \cdot 19}=\frac{9 \cdot 15}{17 \cdot 19}
$$

Now A being fuppofed to have had 7 Trumps, $B 1$, and C_{2}, D muft have 2 neceffarily, and therefore no new Calculation ought to be made on account of D. It follows therefore that the Probability of the difpofition $1,2,2$, belonging refpectively to B, C, D, ought to be expreffed by $\frac{25 \cdot 19 \cdot 17}{7 \cdot 9 \cdot 13 \cdot 29} \times \frac{9 \cdot 15}{17 \cdot 19}=\frac{15 \cdot 25}{7 \cdot 13 \cdot 29}$.

Now three things, whereof two are alike, being to be permuted 3 different ways, it follows that the Probability of the Difpofition 1, 2, 2, as it may happen in any order, will be $\frac{3 \cdot 15 \cdot 25}{7 \cdot 13 \cdot 29}=\frac{1125}{2639}$.

It will be found in the fame manner, that the Probability of the Difpofition 2, 3, 0 as it belongs refpectively to B, C, D, is $\frac{2.5 \cdot 10}{7 \cdot 13 \cdot 29}$; but the number of Permutations of three things which are all unlike being 6, it follows that the faid Probability ought to be multiplied by 6 , which will make it $\frac{6: 2 \cdot 5 \cdot 10}{7 \cdot 13 \cdot{ }^{29}}=\frac{600}{2639}$.

From all which it follows, that the Probability of A 's forcing 4 Trumps is $\frac{1125+6 \mathrm{tro}}{2659}=\frac{1725}{2639}$; which fraction being fubtracted from Unity, the remainder will be $\frac{91.1}{2039}$, and therefore the Odds of A s forcing 4 Trumps are 1725 to 914 , that is very near 17 to 9.

PROBLEM XXX.

A the Player baving 4 Matadors, in Diamonds, with the two black Kings, each accompanied with two fmall Cards of their own fuit; what is the Probability that no one of the others B, C, D, has more than 4 Trumps, or in cafe be bas more, that he bas alfo of the fuit of both bis Kings; in which cafes A wins neceffarily?

SOLUTTON.
The Chances that are againft A are as follows; it being poffible that B may have

Diamonds, Hearts,

5,	5
6,	4
7,	3
8,	2

Number of Chances.

	14112
	5880
	960
	45
Sum	20997

14112 5880 960
Sum $\frac{45}{20997}$

Diamonds	Spades,	Hearts,	Number of Chances.
5,	1	4	70560
5,	2	3	100800
5,	3	2	50400
5,	4	1	8400
5,	5	0	336
6,	1	3	20160
6,	2	2	18900
6,	3	1	5600
6,	4	0	420
7,	1	2	2160
7,	2	1	1200
7,	3	0	160
8,	1	1	60
8,	2	0	15
			279171

Now by reafon that among B, C, D, there are as many Clubs as Spades, viz. 6 of each fort, it follows that the Clubs may be fubftituted in the room of the Spades, which will double this laft number of Chances, and make it $55^{8} 342$; and therefore, adding together the firft and fecond number of Chances, the Sum will be 579339 , which will be the whole number of Chances, whereby B may withftand the Expectation of A; but the number of all the Chances which B has for taking any io Cards out of 30 , is $5 \times 7 \times$ $9 \times 11 \times 13 \times 23 \times 29=30045015$; from which it follows that the Probability of B 's withftanding the Expectation of A is $\frac{579339}{30045015}$: but as this may fall as well upon C and D as upon B, it follows that this Probability ought to be multiplied by 3, then the Product $\frac{1738017}{30045015}$ will exprefs the Probability of A 's lofing; and this being fubtracted from Unity, the remainder will exprefs the Probability of A 's winning ; and therefore the Odds of A 's winning will be little more than $16 \frac{1}{4}$ to I .

PROBLEM XXXI.

A baving Spadille, Manille, King, Knave, and two other fmall Trumps in black, what is the Probability that Bafte accompanied with two other Trumps, or the Queen accompanied with three other, Sall not be in the Jame band; in which cafe A wins neceffarily?

SOLUTION.

The Probability of Bafte being in one hand, accompanied with two other Trumps, has been found, in Problem xxviii, to be $\frac{2882}{7917}$.

The number of Chances for him who has the Queen, to have alfo three other Trumps, excluding Bafte, is

$$
\frac{3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3} \times \frac{25 \cdot 24 \cdot 23 \cdot 22 \cdot 21 \cdot 20}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}=5 \times 7 \times 11 \times 20 \times 23
$$

but the number of Chances for joining any 9 Cards to the Queen is $3 \times 5 \times 7 \times 11 \times 13 \times 23 \times 29$, and therefore the Probability of the Queen's being in one hand, accompanied with three other Trumps, is

$$
\frac{5 \cdot 7 \cdot 11 \cdot 20 \cdot 23}{3 \times 5 \cdot 7 \cdot 11 \cdot 13 \cdot 23 \cdot 29}=\frac{20}{3 \cdot 13 \cdot 29}=\frac{20}{1138}=\frac{140}{7917},
$$

IO4 The Dóctrine of Chances.

now this Probability being added to the former, the Sum will be $\frac{3022}{7997}$; and therefore the Odds of A 's not being withftood either from Bafte being accompanied with two other Trumps, or from the Queen accompanied with three, are 4895 to 3022 , nearly as 13 to 8 .
It may be obferved, that the reafon of Bafte being excluded from among the Trumps that accompany the Queen is this; if the Queen be accompanied with Bafte and two other Trumps, the Bafte itfelf is accompanied with three Trumps, which cafe had been taken in already in the firft part of the Solution.

P R O B L E M. XXXII.

A baving three Matadors in Spades with the Kings of Hearts, Diamonds, and Clubs, two fmall Hearts, and two fmall Diamonds; to find the Probability that not above three Spades 乃ball be in one band, or that, if there be above three, there foall be alfo of the fuits of the three Kings; in which cafe A wins neceffarily.

Solution.

The Probability of not above three Trumps being in one hand $=0.332 \mathrm{I} 4 \mathrm{I}$.

The Probability that one of the Oppofers fhall have 4 Trumps, and at the fame time Hearts, Diamonds, and Clubs, and that no other Thall have 4 Trumps, is $=0.39350 \mathrm{I}$.

The Probability that two of the Oppofers fhall have 4 Trumps, and at the fame time Hearts, Diamonds, and Clubs, is $=0.013836$.

The Probability that one of the Oppofers fhall have 5 Trumps, and at the fame time Hearts, Diamonds, and Clubs, is $=0.103019$.

The Probability that one of the Oppofers fhall have 6 Trumps, Hearts, Diamonds, and Clubs, is $=0.00104 \mathrm{I}$.

The Probability of one of the Oppofers having 7 Trumps, and at the fame time Hearts, Diamonds, and Clubs, is $=0.0003^{1} 3$.

Now the Sum of all there Probabilities is 0.84385 I, which being fubtracted from Unity, the remainder is 0.156149 ; and therefore the Odds of the Player's winning are as 843851 to 156149 , that is very near as 27 to, 5 .

PR O BL E M XXXIII.

To find at Pharaon, how much it is that the Banker gets per Cent. of all the Money that is adventured.

Hypothesis.

I fuppofe firf, that there is but one fingle Ponte; Secondly, that he lays his Money upon one fingle Card at a time; Thirdly, that he begins to take a Card in the beginning of the Game ; Fourthly, that he continues to take a new Card after the laying down of every couple : Fifthly, that when there remain but fix Cards in the Stock, he ceares to take a Card.

Solution.
When at any time the Ponte lays a new Stake upon a Card taken as it happens out of his Book, let the number of Cards already laid down by the Banker be fuppofed equal to x, and the whole number of Cards equal to n.

Now in this circumfance the Card taken by the Ponte has paft four times, or three times, or twice, or once, or not at all.
Firft, If it has paffed four times, he can be no lofer upon that account.

Secondly, If it has paffed three times, then his Card is once in the Stock: now the number of Cards remaining in the Stock being $n-x$, it follows by the firf cafe of the xiiit Problem, that the Lofs of the Ponte will be $\frac{1}{n-x}$: but by the Remark belonging to the $\mathrm{xx}^{\text {th }}$ Problem, the Probability of his Card's having paffed three times preciely in x Cards is $\frac{x \cdot x-1 \cdot x-2 \cdot n-x+4}{n \cdot n-1 \cdot n-2 \cdot n-3}$: now fuppofing the Denominator equal to S, multiply the Lofis he will fuffer, if he has that Chance, by the Probability of having it, and the product $\frac{x \cdot x-1 \cdot x-2 \cdot 4}{S}$ will be his abfolute Lofs in that circumftance.
Thirdly, If it has paffed twice, his abfolute Lofs will, by the fame way of reafoning, be found to be $\frac{x \cdot x-1 \cdot n-x+2,6}{20}$
Fourthly, If it has paffied once, his abfolute Lofs will be found to be $\frac{x \times n-x \cdot n-x-2 \cdot 3}{3}:$

105. The Doctrine of Chances.

Fijtthly, If it has not yet paffed, his abfolute Lofs will be $\frac{n=x \cdot n-x-2 \cdot 2 n-2 x-5}{25}$
Now the Sum of all thefe Loffes of the Ponte will be $\frac{n^{3}-\frac{9}{2} n n^{n}+5^{n}-3^{x}-\frac{3}{2} x x+3^{x 3}}{8}$, and this is the Lofs he fuffers by venturing a new Stake after any number of Cards x are paffed.

But the number of Couples which at any time are laid down, is always one half of the number of Cards that are paffied; wherefore calling t the number of thofe Couples, the Lofs of the Ponte may be exprefled thus $\frac{n^{3}-\frac{9}{2} n n+5 n-6 t-6 t t+24{ }^{3} 3}{s}$

Let now p be the number of Stakes which the Ponte adventures ; let alfo the Lofs of the Ponte be divided into two parts, viz. $\frac{n^{3}-\frac{9}{2} n n+{ }_{5}}{s}$, and $\frac{-6 t-6 t t+24 t}{s}$.
And fince he adventures a Stake p times; it follows that the firf part of his lofs will be $\frac{p^{n 3}-\frac{9}{2} p^{n n}+5 \not f^{n}}{s}$.

In order to find the fecond part, let t be interpreted fucceffively by $\mathrm{o}, \mathrm{I}, 2,3, \& \mathrm{c}$. to the laft term $p-1$; then in the room of $6 t$ we fhall have a Sum of Numbers in Arithmetic Progreffion to be multiplied by 6 ; in the room of $6 t t$ we thall have a Sum of Squares, whofe Roots are in Arithmetic Progreffion, to be multiplied by 6 ; and in the room of $24^{t^{3}}$ we fhall have a Sum of Cubes, whofe Roots are in Arithmetic Progreffion, to be multiplied by 24.

Thefe feveral Sums being collected according to the Rule given in the fecond Remark on the $x^{\text {th }}$ Problem, will be found to be $\frac{6 p^{4}-14 p^{\beta}+\epsilon \neq p+2 p}{s}$ and therefore the whole Lofs of the Ponte will be $\underbrace{p n^{3}-\frac{9}{2} p n n+5 p^{n}+6 p^{4}-14 p^{3}+6 p p+2 p}_{s}$.
Now this being the Lofs which the Ponte fuftains by adventuring the Sum p, each Stake being fuppofed equal to Unity, it follows that the Lofs per Cent. of the Ponte, is the quantity abovewritten multiplied by 100 , and divided by p, which confidering that S has been fuppofed equal to $n \times n=1 \times n-2 \times n-3$, will make it to be $\frac{2 n-5}{2 \cdot n-1 \cdot n-3} \times 100+\frac{\overline{p-1} \times 6 p p-8 p-2}{n \cdot n-1 \times n-2: n-3} \times 100$;
let now n be interpreted by 52, and p by 23; and the Lofs per Cent. of the Ponte, or Gain per Cent. of the Banker, will be found to be $2.99^{2} 5^{1}$; that is $2^{L .}-19^{/ 3}$ - 10^{d}. per Cent.

By the fame Method of procefs, it will be found that the Gain per Cent. of the Banker at Bafjette will be $\frac{3^{n-9}}{n \cdot n-1 \cdot n-2} \times 100+$ $\frac{4 p \cdot p-1 \cdot p-2}{n \cdot n-1 \cdot n-2 \cdot n-3} \times 100$. Let n be interpreted by 51 , and p by 23 ; and the foregoing expreffion will become 0.7905^{82} or $15^{\text {/h }}-9 \frac{1}{2}^{d}$. The confideration of the firft Stake which is adventured before the Pack is turned being here omitted, as being out of the general Rule ; but if that cafe be taken in, the Gain of the Banker will be diminifhed, and be only 0.7^{6245}, that is $15^{/ 3}$. $-3^{\text {d. very near ; }}$ and this is to be eftimated as the Gain per Cent. of the Banker, when he takes but half Face.

Now whether the Ponte takes one Card at a time, or feveral Cards, the Gain per Cent. of the Banker continues the fame: whether the Ponte keeps conftantly to the fame Stake, or fome time doubles or triples it, the Gain per Cent. is fill the fame: whether there be one fingle Ponte or feveral, his Gain per Cent. is not thereby altered. Wherefore the Gain per Cent. of the Banker, upon all the Money that is adventured at Pbaraon, is $2^{L .}-19^{/ 13}-10^{d}$. and at Baffette $15^{\text {B. }}-3^{\text {d. }}$

PROBLEM XXXIV.

Suppofing A and B to play together, that the Cbances they bave respectively to win are as a to b, and that B obliges bimfelf to fet to A folong as A wins witbout interruption: whiat is the adwitage that A gets by bis band?

Solution.

Firf, If A and B fake 1 each, the Gain of A on the firit Game is $\frac{a-b}{a+b}$.

Secondly, His Gain on the fecond Game will alfo be $\frac{a-b}{a+b}$? provided he fhould happen to win the firf: but the Probability of A 's winning the firft Game is $\frac{a}{a+b}$. Wherefore his Gain on the fecond Game will be $\frac{a}{a+b} \times \frac{a-b}{a+b}$.

Thirdly,

108 The Doctrine of Chances.
Thirdly, His Gain on the third Game, after winning the two firft, will be likewife $\frac{a-b}{a+b}$: but the Probability of his winning the two firtt Games is $\frac{a z}{a+\theta)^{2}}$; wherefore his Gain on the third Game is $\frac{a a}{4+b)} \times \frac{a-b}{a+b}$.

Fourtbly, Wherefore the Gain of the Hand of A is an infinite Series; viz. $1+\frac{a}{a+b}+\frac{a a}{a+b)^{2}}+\frac{a^{3}}{a+b)^{3}}+\frac{a^{4}}{a+b^{4}}$, \&cc. to be multiplied by $\frac{a-b}{a+b}$: but the Sum of that infinite Series is $\frac{a+b}{b}$; wherefore the Gain of the Hand of A is $\frac{a+b}{b} \times \frac{a-b}{a+b}=$ $\frac{a-b}{b}$.

> Corollaryi.

If A has the advantage of the Odds, and B fets his hand out, the Gain of A is the difference of the numbers expreffing the Odds, divided by the leffer. Thus if A has the Odds of 5 to 3 , then his Gain will be $\frac{5-3}{3}=\frac{2}{3}$.

Corollary 2.

If B has the difadvantage of the Odds, and A fets his hand out; the Lofs of B will be the difference of the numbers expreffing the Odds divided by the greater : thus if B has but 3 to 5 , his Lofs will be $\frac{2}{5}$.

Corollary 3.

If A and B do mutually engage to fet to one another, as long as either of them wins without interruption, the Gain of A will be found to be $\frac{a a-b b}{a b}$; that is the Sum of the numbers expreffing the Odds multiplied by their difference, the Product of that Multiplication being divided by the Product of the numbers expreffing the Odds. Thus if the Odds were as 5 to 3 , the Sum of 5 and 3 being 8 , and the difference being 2 , multiply 8 by 2 , and divide the product 16 , by the product of the numbers expreffing the Odds, which is 15 , and the Quotient will be $\frac{16}{15}$, or $\frac{1}{15}$, which therefore will be the Gain of A.

Corollary 4.

But if he be only to be fet to, who wins the firft time, and that he be to be fet to as long as he wins without interruption; then the

Gain of A will be $\frac{a^{3}-b^{3}}{a b \times \overline{a+b}}$: thus if a be 5 , and $b 3$, the Gain of A will be $\frac{9^{8}}{120}=\frac{49}{60}$.

P R O B L E M XXXV.

Any number of Letters a, b, c, d, e, f, ซْ ${ }^{\circ}$. all of them different, being taken promifcuoully as it bappens: to find the Probability that fome of them 乃all be found in their places according to the rank they obtain in the Alphabet; and that others of them flall at the fame time be difplaced.

Solution.

Let the number of all the Letters be $=n$; let the number of thofe that are to be in their places be $=p$, and the number of thofe that are to be out of their places $=q$. Suppofe for brevity's fake $\frac{1}{n}=r, \frac{1}{n \cdot n-1}=s, \frac{1}{n \cdot n-1 \cdot n-2}=t, \frac{1}{n \cdot n-1 \cdot n-2 \cdot n-3}$ $=v, \& x c$. then let all the quantities $\mathrm{I}, r, s, t, v, \& \mathrm{c}$. be written down with Signs alternately pofitive and negative, beginning at 1 , if p be $=0$; at r, if p be $=1:$ at s, if p be $=2$, \& c. Prefix to thefe Quantities the Coefficients of a Binomial Power, whofe index is $=q$; this being done, thofe Quantities taken all together will exprefs the Probability required. Thus the Probability that in 6 Letters taken promifcuoufly, two of them, viz. a and b fhall be in their places, and three of them, viz. c, d, e, out of their places, will be

$$
\frac{1}{6 \cdot 5}-\frac{3}{6 \cdot 5 \cdot 4}+\frac{2}{6 \cdot 5 \cdot 4 \cdot 3}-\frac{1}{0 \cdot 5 \cdot 4 \cdot 3 \cdot 2}=\frac{11}{720}
$$

And the Probability that a fhall be in its place, and b, c, d, e, out of their places, will be

$$
\frac{1}{6}-\frac{4}{6 \cdot 5}+\frac{6}{6 \cdot 5 \cdot 4}-\frac{4}{6 \cdot 5 \cdot 4 \cdot 3}+\frac{1}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}=\frac{53}{720}
$$

The Probability that a fhall be in its place, and b, c, d, e, f, out of their places, will be
$\frac{1}{6}-\frac{5}{6 \cdot 5}+\frac{10}{6 \cdot 5 \cdot 4}-\frac{10}{6 \cdot 5 \cdot 4 \cdot 3}+\frac{5}{0.5 \cdot 4 \cdot 3 \cdot 2}-\frac{1}{0.5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$ $=\frac{44}{720}=\frac{11}{180}$.

110 The Doctrine of Chances.
The Probability that a, b, c, d, c, f fhall all be difplaced is
$1-\frac{6}{6}+\frac{15}{6.5}-\frac{20}{0.5 \cdot 4}+\frac{16}{0.5 \cdot 4 \cdot 3}-\frac{6}{6 \cdot 5 \cdot \cdot 4 \cdot 3 \cdot)^{2}}$
$+\frac{1}{0.5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$ or $1-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}-\frac{1}{120}+\frac{1}{720}$
$=\frac{265_{5}}{720}=\frac{53}{144}$.
Hence it may be concluded, that the Probability that one of them at leaft fhall be in its place, is $1-\frac{1}{2}+\frac{1}{6}-\frac{1}{24}+$ $\frac{1}{120}-\frac{1}{720}=\frac{91}{144}$, and that the Odds that one of them at leaft fhall be fo found, are as 91 to 53 .
It muft be obferved, that the foregoing Expreffion may ferve for any number of Letters, by continuing it to fo many Terms as there are Letters: thus if the number of Letters had been feven, the Probability required would have been $\frac{177}{280}$.

Demonstration.

The number of Chances for the Letter a to be in the firft place, contains the number of Chances by which a being in the firft place, b may be in the fecond, or out of it : This is an Axiom of common Senfe of the fame degree of evidence, as that the whole is equal to all its parts.

From this it follows, that if from the number of Chances that there are for a to be in the firft place, there be fubtracted the number of Chances that there are for a to be in the firit place, and b at the fame time in the fecond, there will remain the number of Chances by which a being in the firft place, b may be excluded the fecond.
For the fame reafon it follows, that if from the number of Chances for a and b to be refpectively in the firtt and fecond places, there be fubtracted the number of Chances by which a, b, and c may be refpectively in the firft, fecond, and third places; there will remain the number of Chances by which a being in the firf, and b in the fecond, c may be excluded the third place : and fo of the ref.
Lt $+a$ denote the Probability that a fhall be in the firf place, and let - a denote the Probability of its being out of it. Likewife let the Probabilities that b fhall be in the fecond place, or out of it, be refpectively expreft by $+b$ and $-b$.

Let the Probability that a being in the firt place, b flall be in the fecond, be expreffed by $a+b$: Likewife let the Probability that a being in the firft place, b fhall be excluded the fecond, be expreffed by $a-b$.

Univerfally. Let the Probability there is that as many as are to be in their proper places, fhall be fo, and that as many others as are at the fame time to be out of their proper places fhall be fo found, be denoted by the particular Probabilities of their being in their proper places, or out of them, written all together: So that, for inflance $a+b+c-d-c$, may denote the Probability that a, b, and c fhall be in their proper places, and that at the fame time both d and e fhall be excluded their proper places.

Now to be able to derive proper Conclufions by virtue of this Notation, it is to be obferved, that of the Quantities which are here confidered, thofe from which the Subtraction is to be made are indifferently compofed of any number of Terms connected by -1 and -; and that the Quantities which are to be fubtracted do exceed by one Term thofe from which the Subtraction is to be made; the reft of the Terms being alike, and their Signs alike; then nothing more is requifite to have the remainder, than to preferve the Quantities that are alike, with their proper Signs, and to change the Sign of the Quantity exceeding.

It having been demonftrated in what we have faid of Permutations and Combinations, that $a=\frac{1}{n} ; a+b=\frac{1}{n \cdot n-1} ; a+b+c=$ $\frac{1}{n \cdot n-1 \cdot n-2}, \& c$. let $\frac{1}{n}, \frac{1}{n \cdot n-1}, \& c$. be refpectively called $r, s, t, v, \& c$. this being fuppofed, we may come to the following Conclufions.
$b=r$
then $1^{\circ} \cdot \frac{b+a=s}{\frac{b-a=r-s}{c+b}} \begin{gathered}c+b+a=t \\ c+b=s\end{gathered}$ for the rearon that $a+b=s$.

$$
\begin{aligned}
& 2^{\circ} \cdot \frac{c+b-a=s-c}{c-a}=r-s \\
& \frac{c-a+b=+s-t}{} \text { by the firft } \mathrm{Co} \\
& 3^{\circ} \because \frac{c-a-b=r-2 s-t}{d+c+b=t} \\
& \\
& 4^{\circ} \cdot \frac{d+c+b+a=v}{d+c+b-a=t-v}
\end{aligned}
$$

by the firft Conclufion.

By the fame process, if no letter be particularly affigned to be in its place the Probability that fuck of them as are affigned may be out of their places, will likewife be found thus.
$-a=\mathrm{r}-r$, for $+a$ and $-a$ together make Unity.
$-a+b=r-s$ by the firft Conclufion.
$7^{\circ}:-a-b=1-2 r+s$
$-a-b=1-2 r+s$ by the Seventh Conclufion.
$-a-b+c=r-2 s+t$ by the third.
$8^{0} .-a-b-c=1-3^{r}+3^{s}-t$.
Now examining carefully all the foregoing Conclufions, it will be perceived, that when a Queftion runs barely upon the difplacing any given number of Letters, without requiring that any other Could be in its place, but leaving it wholly indifferent; then the Vulgar Algebraic Quantities which lie at the right-hand of the Equations, begin constantly with Unity: it will alto be perceived, that when one fingle Letter is affigned to be in its place, then thole Quantities begin with r, and that when two Letters are affigned to be in their places, they begin with s, and fo on : moreover 'tiv obvious, that there Quantities change their Signs alternately, and that the numerical Coefficients, which are prefixed to them are thole of a Binomial Power, whore Index is equal to the number of Letters which are to be displaced.

PROBLEM XXXVI.

Any given number of Letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathscr{F}^{\circ} \mathrm{c}$. being each repeated a certain number of times, and taken promifcuoully as it happens: To find the Probability that of Some of thole forts, Some one Letter of each may be found in its place, and at the fame time, that of Some other forts, no one Letter be found in its place.

Solution.

Suppofe n be the number of all the Letters, l the number of times that each Letter is repeated, and confequently $\frac{\pi}{l}$ the whole number of Sorts: fuppofe alfo that p be the number of Sorts of which fome one Letter is to be found in its place, and q the number of Sorts of which no one Letter is to be found in its place. Let now the prefrriptions given in the preceding Problem be followed in all refpects, faving that r muft here be made $=\frac{1}{n}$, $s=\frac{l l}{n \cdot n-1}, t=\frac{13}{n \cdot n-1-n-2}, \& c$. and the Solution of any particular cafe of the Problem will be obtained.
Thus if it were required to find the Probability that no Letter of any fort fhall be in its place, the Probability thereof would be expreffed by the Series
$\mathrm{I}-q r+\frac{q \cdot q-1}{1 \cdot 2} s-\frac{q \cdot q-1 \cdot q-2}{1 \cdot 2 \cdot 3}+\frac{n \cdot q-1 \cdot q-2 \cdot q-3}{1 \cdot \frac{2}{2} \cdot \frac{1}{4}} v, \& \mathrm{c}$. of which the number of Terms is equal to $q+\mathrm{I}$.
But in this particular cafe q would be equal to $\frac{n}{2}$, and therefore, the foregoing Series might be changed into this, viz.

$$
\frac{1}{2} \times \frac{n-l}{n-1}-\frac{1}{6} \times \frac{n-l \cdot n-2 l}{n-1 \cdot n-2}+\frac{1}{24} \times \frac{n-l \cdot n-2 l \cdot n-3 l}{n-1 \cdot n-2 \cdot n-3}, \& 8 c .
$$

of which the number of Terms is equal to $\frac{n-l}{l}$.

Corollaryi.

From hence it follows, that the Probability of one or more Letters, indeterminately taken, being in their. places, will be expreffed as follows:
$1-\frac{1}{2} \times \frac{n-l}{n-1}+\frac{1}{6} \times \frac{n-l \cdot n-2 l}{n-1 \cdot n-2}-\frac{1}{24} \times \frac{n-l \cdot n-1 \cdot n-2 l}{n-1 \cdot n-2 \cdot n-3}, \delta<c$.

Coroleary 2.

The Probability of two or more Letters indeterminately taken, being in their places, will be
$\frac{1}{2} \times \frac{n-1}{n-1}-\frac{2}{1 \cdot 3} \times \frac{n-2 l}{n-2} A+\frac{3}{2 \cdot 4} \times \frac{n-3 l}{n-3} B-\frac{4}{3 \cdot 5} \times \frac{n-4 l}{n-4} C$ $+\frac{\varepsilon}{4.0} \times \frac{n-c l}{n-5} D$, \&cc. wherein it is neceffary to obferve, that the Capitals $A, B, C, D, \& c$, denote the preceding Terms.

114 The Doctrine of Chances.

Altho' the formation of this laft Series flows naturally from what we have already effablifhed, yet that nothing may be wanting to clear up this matter, it is to be obferved, that if one Species is to have fome one of its Letters in its proper place, and the reft of the Species to be excluded, then the Series whereby the Problem is determined being to begin at r, according to the Precepts given in the preceding Problem, becomes

$$
r-\ddot{q} s+\frac{q \cdot q-1}{1 \cdot 2} t-\frac{q \cdot q-i \cdot q-2}{1 \cdot \frac{2}{3} \cdot \frac{1}{3}} v, \& c c .
$$

but then the number of Species being $\frac{n}{l}$, and all but one being to be excluded, it follows that q in this cafe is $=\frac{n}{l}-1 \equiv \frac{n-l}{l}$ wherefore the preceding Series would become, after the proper Subfitutions,
$\frac{l}{n}-\frac{n-l \cdot l}{n \cdot n-1}+\frac{1}{2} \times \frac{n-l \cdot n-2 l \cdot l}{n \cdot n-1 \cdot n-2}-\frac{1}{6} \times \frac{n-l \cdot n-2 l \cdot n-3 l \cdot l}{n \cdot n-1 \cdot n-2 \cdot n-3}, \& c c$.
And this is the Probability that fome one of the Letters of the Species particularly given, may obtain its place, and the reft of the Species be excluded; but the number of Species being $\frac{n}{7}$, it follows that this Series ought to be multiplied by $\frac{\pi}{7}$, which will make it
$1-\frac{n-l}{n-1}+\frac{1}{2} \times \frac{n-l \cdot n-2 l}{n-1 \cdot n-2}-\frac{1}{6} \times \frac{n-l \cdot n-2 l \cdot n-3 l}{n-1 \cdot n-2 \cdot n-3}, \quad \& \varepsilon c$.
And this is the Probability that fome one Species indeterminately taken, and no more than one, may have fome one of its Letters in its proper place.

Now if from the Probability of orie or more being in their places, be fubtracted the Probability of one and no more being in its place, there will remain the Probability of two or more indeterminately taken being in their places, which confequently will be the difference between the following Series, viz.

$$
\begin{aligned}
& 1-\frac{1}{2} \times \frac{n-1}{n-1}+\frac{1}{6} \times \frac{n-1 \cdot n-2 l}{n-1 \cdot n-2}-\frac{1}{24} \times \frac{n-1 \cdot n-2 l \cdot n-3 l}{n-1 \cdot n-2 \cdot n-}, \& c . \\
& \text { and } 1-\frac{n-1}{n-1}+\frac{1}{2} \times \frac{n-1 \cdot n-2 l}{n-1 \cdot n-2}-\frac{1}{6} \times \frac{n-l \cdot n-2 \cdot n-3 l}{n-1 \cdot n-2 \cdot n-3}, \& \mathrm{c} .
\end{aligned}
$$

which difference therefore will be
$\frac{1}{2} \times \frac{n-1}{n-1}-\frac{1}{3} \times \frac{n-1 \cdot n-2 l}{n-1 \cdot n-2}+\frac{1}{8} \times \frac{n-1 \cdot n-2 l \cdot n-3 l}{n-1 \cdot n-2 \cdot n-3}, \&<c$ or $\frac{1}{2} \times \frac{n-1}{n-1}-\frac{2}{1 \cdot 3} \times \frac{n-2 l}{n-2} A+\frac{3}{2 \cdot 4} \times \frac{n-3 l}{n-3} B-\frac{4}{3 \cdot 5} \times \frac{n-4 l}{n-4} C, \& \mathrm{c}$.
as we had expreffed it before : and from the fame way of reafoning, the other following Corollaries may be deduced.

Coroliary 3.

The Probability that three or more Letters indeterminately taken may be in their places, will be expreffed by the Series

$$
\begin{aligned}
& \frac{1}{6} \times \frac{n-l \cdot n-2 l}{n-1 \cdot n-2}-\frac{3}{1 \cdot 4} \times \frac{n-3 l}{n-3} A-1-\frac{4}{2 \cdot 5} \times \frac{n-4 l}{n-4} B \\
& -\frac{5}{3 \cdot 6} \times \frac{n-5 l}{n-5} C+\frac{6}{4 \cdot 7} \times \frac{n-6 l}{n-6} D, \& c .
\end{aligned}
$$

Corollary 4.
The Probability that four or more Letters indeterminately taken may be in their places will be thus expreffed
$\frac{1}{24} \times \frac{n-l \cdot n-2 l \cdot n-3 l}{n-1 \cdot n-2 l^{2} \cdot n-3}-\frac{4}{1 \cdot 5} \times \frac{n-4 l}{n-4} A+\frac{5}{2 \cdot 6} \times \frac{n-5 l}{n-5} B$
$-\frac{6}{3 \cdot 7} \times \frac{n-6 l_{1}}{n-6} C$; \& .
The Law of the continuation of thefe Series being manifeft, it will always be eafy to affign one that fhall fit any cafe propofed:

From what we have faid it follows, that in a common Pack of 52 Cards, the Probability that one of the four Aces may be in the firft place, or one of the four Deuces in the fecond, or one of the four Trays in the third ; or that fome of any other fort may be in its place (making 13 different places in aill) will be expreffed by the Series exhibited in the firft Corollary.

It follows likewife, that if there be two Packs of Cards, and that the order of the Cards in one of the Packs be the Rule whereby to eftimate the rank which the Cards of the fame. Suit and Name are to obtain in the other ; the Probability that one Card or more in one of the Packs may be found in the fame pofition as the like Card in the other Pack, will be expreffed by the Series belonging to the firt Corollary, making $n=52$, and $l=\mathrm{I}$. Which Series will in this care be $I-\frac{1}{2}+\frac{1}{6}-\frac{1}{2^{2}}+\frac{1}{120^{\circ}}-\frac{1}{7^{20}}$, \&c. whereof 5.2 Terms are to be taken.

116 The Doctrine of Chances.

If the Terms of the foregoing Series are joined by Couples, the Series will become
$\frac{1}{2}+\frac{1}{2 \cdot 4}+\frac{1}{2 \cdot 3 \cdot 4 \cdot 6}+\frac{1}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 8}+\frac{1}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 10}$
\&c. of which 26 Terms ought to be taken.
But by reafon of the great Convergency of the faid Series, a few of its Terms will give a fufficient approximation, in all cafes; as appears by the following Operation

$$
\begin{aligned}
\frac{1}{2} & =0.500000 \\
\frac{1}{2 \cdot 4} & =0.125000 \\
\frac{1}{2 \cdot 3 \cdot 4 \cdot 6} & =0.006944+ \\
\frac{1}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 8} & =0.000174 \mathrm{t} \\
\frac{1}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 10} & =0.000002+ \\
\hline \operatorname{Sum} & =0.632120 \mathrm{t}
\end{aligned}
$$

Wherefore the Probability that one or more like Cards in two different Packs may obtain the fame pofition, is very nearly $0.6{ }_{32}$, and the Odds that this will happen once at leaft as 63_{2} to 368 , or 12 to 7 very near.

But the Odds that two or more like Cards in two different Packs will not obtain the fame pofition are very nearly as 736 to 264 , or 14 to 5 .

Remark.

It is known that $1+y+\frac{1}{2} y y+\frac{1}{6} y^{3}+\frac{1}{24} y^{4} \& \mathrm{c}$. is the number whofe hyperbolic Logarithm is y, and therefore $1-y+$ $\frac{1}{2} y y-\frac{1}{6} y^{3}+\frac{1}{24} y^{4} \& c$. is the Number whofe hyperbolic Logarithm is $-y$. Let N be $=y-\frac{1}{2} y y+\frac{1}{6} y^{3}-\frac{1}{24} y^{4} \& c$. then I - N is the Number whofe hyperbolic Logarithm is $-y$. Let now y be $=\mathrm{I}$, therefore $\mathrm{I}-N$ is the number whofe hyperbolic Logarithm is -1 ; but the number whofe hyperbolic Logarithm is - $\mathbf{1}$, is the reciprocal of that whofe hyperbolic Logarithm is I , or whofe Briggian Logarithm is 0.4342944 . Therefore 9.5657056 is the Briggian Logarithm anfwering to the hyperbolic Logarithm - I, but the number anfwering to it is 0.36788 . Therefore 1 $N=0.36788$; and $N=1-0.36788=0.63212$; and therefore
fore the Series $y-\frac{1}{2} y y+\frac{1}{6} y^{3}-\frac{1}{24} y^{4} \& c$. in infinitum, when $y=\mathrm{I}$, that is $\mathrm{I}-\frac{1}{2}+\frac{1}{6}-\frac{1}{24} \& \mathrm{cc}$. $=0.63212$.

Corollary 5.

If A and B each holding a Pack of Cards, pull them out at the fame time one after another, on condition that every time two like Cards are pulled out, A hall give B a Guinea; and it were required to find what confideration B ought to give A to play on thole Terms : the Anfwer will be one Guinea, let the number of Cards be what it will.

Altho' this be a Corollary from the preceding Solutions, yet it may more eafily be made out thus; one of the Packs being the Rule whereby to eftimate the order of the Cards in the fecond, the Probability that the two firft Cards are alike is $\frac{1}{5^{2}}$, the Probability that the two fecond are alike is alfo $\frac{1}{5^{2}}$, and therefore there being 52 fuck alike combinations, it follows that the Value of the whole is $\frac{52}{5^{2}}=\mathrm{I}$.

Corollary 6.

If the number of Packs be given, the Probability that any given number of Circumftances may happen in any number of Packs, will eafily be found by our Method: thus if the number of Packs be k, the Probability that one Card or more of the fame Suit and Name in every one of the Packs may be in the fame pofition, will be expreffed as follows,

PR O B L EM XXXVII.

If A and B play together each with a certain number of Bowls $=\mathrm{n}$: what are the respective Probabilities of winning, fuppofing that each of them want a certain number of Games of being up?

Solution.

Firft, The Probability that fome Bowl of B may be nearer the Jack than any Bowl of A is $\frac{1}{2} ; A$ and B in this Problem being fuppofed equal Players.

Secondly, Suppofing one of his Bowls nearer the Jack than any Bowl of A, the number of his remaining Bowls is $n-1$, and the number of all the Bowls remaining between them is $2 n-1$: wherefore the Probability that fome other of his Bowls may be nearer the Jack than any Bowl of A will be $\frac{n-1}{2 n-1}$, from whence it follows, that the Probability of his winning two Bowls or more is $\frac{1}{2} \times \frac{n-1}{2 n-1}$.

Thirdly, Suppofing two of his Bowls nearer the Jack than any Bowl of A, the Probability that fome other of his Bowls may be nearei the Jack than any Bowl of A, will be $\frac{n-2}{2 n^{2}-2}$; wherefore the Probability of his winning three Bowls or more is $\frac{1}{2} \times \frac{n-1}{2 n-1} \times \frac{n-2}{2 n-2}$: the continuation of which procefs is manifef.

Fourthly, The Probability that one fingle Bowl of B fhall be nearer the Jack than any Bowl of A is $\frac{1}{2}-\frac{1}{2} \times \frac{n-1}{2 n-1}$ or $\frac{1}{2} \times \frac{n}{2 n-1}$; for if from the Probability that one or more of his Bowls may be nearer the Jack than any Bowl of \mathcal{A}, there be fubtracted the Probability that two or more may be nearer, there remains the probability of one fingle Bowl of B being nearer: in this cafe B is faid to win one Eowl at an end.

Fiftbly, The Probability that two Bowls of B, and not more, may be nearer the Jack than any Bowl of A, will be found to be $\frac{1}{2} \times \frac{n-1}{2 n-1} \times \frac{n}{2 n-2}$, in which cafe, B is faid to win two Bowls at an end.

Sixtbly, The Probability that B may win three Bowls at an end will be found to be $\frac{1}{2} \times \frac{n-1}{2 n-1} \times \frac{n-2}{2 n-2} \times \frac{n}{2 n-3}$; the procefs whereof is manifert.

It may be obferved, that the foregoing Expreffions might be reduced to fewer Terms; but leaving them unreduced, the Law of the Procefs is thereby made more confpicuous.

It is carefully to be obferved, when we mention henceforth the probability of winning two Bowls, that the Senfe of it ought to be extended to two Bowls or more; and that when we men-
tion the winning two Bowls at an end, it ought to be taken in the common acceptation of two Bowls only: the like being to be obferved in other cafes.

This preparation being made; fuppofe that A wants one Game of being up and B two; and it be required in that circumftance to determine their probabilities of winning.

Let the whole Stake between them be fuppofed $=\mathrm{I}$. Then either A may win a Bowl, or B win one Bowl at an end, or B may win two Bowls.

In the firft cafe be lofes his Expectation.
In the fecond cafe B becomes intitled to $\frac{1}{2}$ of the Stake, but the probability of this cafe is $\frac{1}{2} \times \frac{n}{2 n-1}$. Wherefore his Expectation arifing from that part of the Stake he will be intitled to, if this Cafe fhould happen, and from the probability of its happening, will be $\frac{1}{4} \times \frac{n}{2 n-1}$.

In the third cafe, B wins the whole Stake I, but the probability of this Cafe, is $\frac{1}{2} \times \frac{n-1}{2 n-1}$.

From this it follows, that the whole Expectation of B is equal to $\frac{1}{4} \times \frac{n}{2 n-1}+\frac{1}{2} \times \frac{n-1}{2 n-1}$, or $\frac{3 n-2}{8 n-4}$. Which being fubtracted from Unity, the remainder will be the Expectation of A, viz. $\frac{5^{n-2}}{8 n-4}$. It may therefore be concluded that the Probabilities which A and B have of winning are refpectively as 5^{n-2} to $3 n-2$.
'Tis remarkable, that the fewer the Bowls are the greater is the proportion of the Odds; for if A and B play with fingle Bowls, the proportion will be as 3 to I ; if they play with two Bowls each, the proportion will be as 2 to 1 ; if they play with three Bowls each, the proportion will be as 13 to 6 ; yet let the number of Bowls be never fo great, that proportion will not defcend fo low as 5 to 3 .

Let us now fuppofe that A wants one Game of being up, and B three; then either A may win a Bowl, or B one Bowl at an end, or two Bowls at an end, or three Bowls.

In the firlt Cafe, B lofes his Expectation.
If the fecond Cafe happen, then B will be in the circumftance of wanting but two to A 's one; in which cafe his Expectation will be $\frac{3 n-2}{8 n-4}$, as it has been before determined : but the probability that this Cafe may happen is $\frac{1}{2} \times \frac{n}{2 n-1}$; wherefore the Expectation

The Doctrine of Chances.

tion of B arifing from the profpect of this Care will be equal to $\frac{1}{2} \times \frac{n}{2 n-1} \times \frac{3^{n}-2}{8 n-4}$.

If the third Cafe happen, then B will be intitled to one half of the Stake : but the Probability of its happening is $\frac{1}{2} \times \frac{n-1}{2 n-1} \times$ $\frac{n}{2 n-2}$; wherefore the Expectation of B ariing from the profpect of this cafe is $\frac{1}{4} \times \frac{n-1}{2 n-1} \times \frac{n}{2 n-2}$ or $\frac{1}{8} \times \frac{n}{2 n-1}$.
If the fourth Cafe happen, then B wins the whole Stake I: but the Probability of its happening is $\frac{1}{2} \times \frac{n-1}{2 n-1} \times \frac{n}{2 n-2}$ or $\frac{1}{4} \times \frac{n-2}{2 n-1}$
From this it follows, that the whole Expectation of B will be $\frac{9^{2 n n-12 n+4}}{8 \times 2 n-1}$; ; which being fubtracted from Unity, the remainder will be the Expectation of A, viz. $\frac{23 n n-19^{n+4}}{8 \times 2 n-n^{2}}$. It may therefore be concluded that the Probabilities which A and B have of winning will be as $23 n n-19 n+4$ to $9 n n-13 n+4$.
N. B. If A and B play only with one Bowl each, the Expectation of B as deduced from the foregoing Theorem would be found $=0$, which we know from other principles ought to be $=\frac{1}{8}$. The reafon of which is, that the cafe of winning two Bowls at an end, and the cafe of winning three Bowls enter the general conclufion, which cafes do not belong to the Suppofition of playing with fingle Bowls; wherefore excluding thofe two Cafes, the Expectation of B will be found to be $\frac{1}{2} \times \frac{n}{2 n-1} \times \frac{3^{n-2}}{8 n-4}=\frac{1}{8}$, which will appear if n be made $=1$. But the Expectation of B in the cafe of two Bowls would be rightly determined from the general Solution : the reafon of which is, that the Probability of winning three Bowls being univerfally $\frac{1}{4} \times \frac{n-2}{2 n-1}$, that Expreffion becomes $=0$, when n is interpreted by 2 ; which makes it that the general Expreffion is applicable to this Cafe.

After what has been faid, it will be eafy to extend this way of reafoning to any circumftance of Games wanting between A and B; by making the Solution of each fimpler Cafe fubfervient to the Solution of that which is next more compounded.

Having given formerly the Solution of this Problem, propofed to me by the Honourable Francis Robartes Efq; in the Pbilofopbical Tranfactions Number 329 ; I there faid, by way of Corollary, that
if the proportion of Skill in the Gamefters were given, the Problem might alfo be folved : fince which time M. de Monmort, in the fecond Edition of a Book by him publifhed upon the Subject of Chance, has folved this Problem as it is extended to the confideration of the Skill, and to carry his Solution to a great number of Cafes, giving alfo a Method whereby it might be carried farther: But altho' his Solution is good, as he has made a right ufe of the Doctrine of Combinations, yet I think mine has a greater degree of Simplicity, it being deduced from the original Principle whereby I have demonftrated the Doctrine of Permutations and Combinations : wherefore to make it as familiar as poffible, and to thew its vaft extent, I fhall now apply it to the general Solution of this Problem, by taking in the confideration of the Skill of the Gamefters.

But before I proceed, it is neceffary to define what I call Skill: viz. that it is the proportion of Chances which the Gamefters may be fuppofed to have for winning a fingle Game with one Bowl each.

PR O B L E M XXXVIII.

If A and B , whofe proportion of Jill is as a to b , play togetber each with a certain number of Bowls: what are their refpective Probabilities of winning, fuppofing each of them to want a certain number of Games of being up?

Solution.
Firf, The Chance of B for winning one fingle Bowl being b, and the number of his Bowls being n, it follows that the Sum of all his Chances is $n b$; and for the fame reafon, the Sum of all the Chances of A is $n a$: wherefore the Sum of all the Chances for winning one Bowl or more is $n a+n b$; which for brevity's fake we may call f. From whence it follows, that the Probability which B has of winning one Bowl is $\frac{n b}{f}$.

Secondly, Suppofing one of his Bowls nearer the Jack than any of the Bowls of A, the number of his remaining Chances is $\overline{n-1} \times b$; and the number of Chances remaining between them is $s-b$: wherefore the Probability that fome other of his Bowls may be nearer the Jack than any Bowl of A will be $\frac{\overline{n-1} \times b}{\int-b}$; from whence it follows that the Probability of his winning two Bowls or more is $\frac{n b}{f} \times \frac{\overline{n-1} \times b}{f-6}$.

Thirilly, Suppofing two of his Bowls nearer the Jack than any of the Bowls of A, the number of his remaining Chances is $\overline{n-2} \times b$; and the number of Chances remaining between them is $s-2 b$; wherefore the Probability that fome other of his Bowls may be nearet the Jack than any Bowl of A will be $\frac{\overline{n-2} \times b}{\sqrt{-2 b}}$. From whence it follows that the Probability of his winning three Bowls or more is $\frac{n b}{\int} \times \frac{\frac{n-1}{n-b}}{f-b} \times \frac{n-2 \times b}{f-2 b}$; the continuation of which procefs is manifeft.

Fourtbly, If from the Probability which B has of winning one Bowl or more, there be fubtracted the Probability which he has of winning two or more, there will remain the Probability of his winning one Bowl at an end : which therefore will be found to be

$$
\frac{n b}{f}-\frac{n b}{\int} \times \frac{\overline{n-1} \times b}{\int-b} \text {, or } \frac{n b}{\int} \times \frac{s-n b}{\int-b} \text {, or } \frac{n b}{\int} \times \frac{a n}{f-b} \text {. }
$$

Fiftbly, For the fame reafons as above, the Probability which B has of winning two Bowls at an end, will be $\frac{n b}{\int} \times \frac{\frac{n-1 \times b}{\int-b}}{} \times$ $\frac{a n}{f-2 b}$.

Sixtbly, And for the fame reafon likewife, the Probability which B has of winning three Bowls at an end will be found to be $\frac{n b}{\int} \times \frac{\overline{n-1} \times 6}{\int-6} \times \frac{\overline{n-2} \times b}{\int-2 b} \times \frac{a n}{\int-3^{6}}$; The continuation of which procefs is manifeft.
N. B. The fame Expectations which denote the Probability of any circumftance of B will denote likewife the Probability of the like circumftance of A, only changing b into a, and a into b.

Thefe things being premifed, fuppofe firft, that each wants one Game of being up; tis plain, that the Expectations of A and B are refpectively $\frac{a n}{\int}$ and $\frac{b_{n}}{/}$. Let this Expectation of B be called P .

Secondly, Suppofe A wants one Game of being up, and B two, and let the Expectation of B be required : then either A may win a Bowl, or B win one Bowl at an end, or B win two Bowls.
If the firt Cale happens, B lofes his Expectation.
If the fecond happens, he gets the Expectation P; but the Probability of this Cafe is $\frac{n b}{\int} \times \frac{a n}{f-6}$: wherefore the Expectation of B arifing from the poffibility that it may fo happen is $\frac{n b}{f} \times \frac{a n}{f-b}$ $\times \mathrm{P}$.

If the third Cafe happens, he gets the whole Stake I; but the Probability of this Cafe is $\frac{n b}{f} \times \frac{n b-b}{f-b}$; wherefore the Expectation of B arifing from the Probability of this. Cafe is $\frac{n b}{\int} \times \frac{n b-b}{\int-b} \times 1$.

From which it follows, that the whole Expectation of B will be $\frac{n b}{f} \times \frac{a n}{f-b} \times \mathrm{P}+\frac{n b}{f} \times \frac{n b-b}{f-b}$. Let this Expectation be called Q .

Thirdly, Suppofe A to want one Game of being up, and B three : then either B may win one Bowl at an end, in which Cafe he gets the Expectation Q; or two. Bowls at an end, in which Cafe he gets the Expectation P; or three Bowls, in which Cafe he gets the whole Stake 1. Wherefore the Expectation of B will be foned to be $\frac{n b}{f} \times \frac{a n}{f-b} \times \mathrm{Q}+\frac{n b}{f} \times \frac{\frac{1}{n-\frac{1}{2}} \times b}{f-b} \times \frac{a n}{f-2 b} \times \mathrm{P}+\frac{n b}{\int} \times \frac{\frac{\pi}{n-1} \times b}{f-b}$ $x \frac{\overline{n-2} \times b}{f-2 b}$.

An infinite number of there Theorems may be formed in the fame manner, which may be continued by infpection, having well obferved how each of them is deduced from the preceding.

If the number of Bowls were unequal, fo that A had m Bowls, and B, n Bowls; then fuppofing $m a+n b=s$, other Theorems might be found to anfwer that inequality: and if that inequality fhould not be conftant, but vary at pleafure ; other Theorems might alfo be found to anfwer that Variation of inequality, by following the fame way of arguing. And if three or more Gamefters were to play together under any circumftance of Games wanting, and of any given proportion of Skill, their Probabilities of winning might be determined in the fame manner.

PROBLE M XXXIX.

To. find the Expertation of A, when with a Die of any given number of Faces, be undertakes to fing any number of them in any given number of Cafts.

Solution.

Let $p+1$ be the number of all the Faces in the Die, n the number of Caft, f the number of Faces which he undertakes to fing.

The number of Chances for the Ace to come up once or more in any number of Cafts n, is $\overline{p+1})^{n}-p^{n}:$ as has been proved in the Introduction.

Let the Deux, by thought, be expunged out of the Die, and thereby the number of its Faces reduced to p, then the number of Chances for the Ace to come up will at the fame time be reduced to $p^{n}-\overline{p-1}{ }^{n}$. Let now the Deux be reftored, and the number of Chances for the Ace to come up without the Deux, will be the fame as if the Deux were expunged: But if from the number of Chances for the Ace to come up with or without the Deux, viz. from $\overline{p+1}{ }^{n}-p^{2}$ be fubtracted the number of Chances for the Ace to come up without the Deux, viz. $p^{n}-p-1{ }^{n}$, there will remain the number of Chances for the Ace and the Deux to come up once or more in the given number of Cafts, which number of Chances confequently will be $\overline{p+1})^{n}-2 p^{\prime}+\overline{p-1}{ }^{n}$.

By the fame way of arguing it will be proved, that the number of Chances, for the Ace and Deux to come up without the Tray, will be $\left.p^{n}-2 \times p-1-^{n}+p-2\right)^{n}$, and confequently that the number of Chances for the Ace, the Deux, and Tray to come up once or more, will be the difference between $\overline{p+1}{ }^{n}-2 p^{n}+\overline{p-1} n$, and $p^{n}-2 \times \overline{p-1} n+\overline{p-2} n$, which therefore will be $\overline{p+1} n$ $-3 \times p^{2}+3 \times \overline{p-1}^{n}-\overline{p-2}^{n}$.

Again, it may be proved that the number of Chances for the Ace, the Deux, the Tray, and the 2uatre to come up is $\overline{p+1}$ * $-4 \times p^{n}+6 \times p-1 n-4 \times p-2{ }^{n}+\overline{p-3} n$; the continuation of which procefs is manifert.

Wherefore if all the Powers $\left.\overline{p+1} n, p^{n}, \overline{p-1} n, \overline{p-2}\right)^{n}$, $\overline{p-3} n$, \&cc. with Signs alternately pofitive and negative be written in order, and to thofe Powers there be prefixed the refpective Coefficients of a Binomial raifed to the Power f, expreffing the number of Faces required to come up; the Sum of all thofe Terms will be the Numerator of the Expectation of A, of which the Denominator will be $\overline{p+1}{ }^{n}$.

ExAMPLEI.

Let Six be the number of Faces in the Die, and let A undertake in eight Cafts to fling both an Ace and a Deux, without any regard to order : then his Expectation will be $\frac{6^{8}-2 \times 5^{8}+4^{8}}{6^{8}}$ $=\frac{964502}{1680216}=\frac{4}{7}$ nearly.

ExAMPLE 2.
Let A undertake with a common Die to fling all the Faces in 12 Cafts, then his Expectation will be found to be

$$
\frac{6^{12}-6 \times 5^{12}+15 \times 4^{12}-20 \times 3^{12}+15 \times 2^{12}-6 \times 1^{12}+1 \times 0^{12}}{6^{12}}=\frac{10}{23}
$$ nearly.

Example 3.

If A with a Die of 36 Faces undertake to fling two given Faces in 43 Cafts; or which is the fame thing, if with two common Dice he undertake in 43 Cafts to fling two Aces at one time, and two Sixes at another time; his Expectation will be $\frac{3643-2 \times 25^{43}+2443}{3^{3043}}=\frac{49}{100}$ nearly.
N. B. The parts which compofe thefe Expectations are eafily obtained by the help of a Table of Logarithms.

PROBLEM XL.

To find in bow many Trials it will be probable that \mathbf{A} with a Die of any given number of. Faces 乃ball throw any propofed number of them.

Solution.
Let $p+1$ be the number of Faces in the Die, and f the number of Faces which are to be thrown: Divide the Logarithm of $\frac{1}{1-\sqrt[f]{\frac{1}{2}}}$ by the Logarithm of $\frac{p+1}{p}$, and the Quotient will exprefs the number of Trials requifite to make it as probable that the propofed Faces may be thrown as not.

Demonstration.

Suppofe Six to be the number of Faces that are to be thrown, and n the number of Trials, then by what has been demonfrated in the preceding Problem the Expectation of A will be

126 The Doctrine of Chances:
Let it be fuppofed that the Terms, $p+1, p, p-1, p-2$, \&cc. are in geometric Progreffion, (which Suppofition will very little err from the truth, efpecially if the proportion of p to I, be not very fmall.) Let now r be written inftead of $\frac{p+1}{p}$, and then the Expectation of A will be changed into $\mathrm{I}-\frac{6^{2}}{r^{n}}+\frac{15}{r^{2 n}}$ —. $\frac{20}{r^{3^{n}}}+\frac{15}{r^{4 n}}-\frac{6}{r^{5^{n}}}+\frac{1}{r^{6 n}}$, or $\overline{1-\frac{1}{r^{n}}}{ }^{6}$. But this Expectation of A ought to be made equal to $\frac{1}{2}$, fince by Suppofition he has an equal Chance to win or lofe, hence will arife the Equation $1-\left.\frac{1}{r^{n}}\right|^{6}=\frac{1}{2}$ or $r^{n}=\frac{1}{1-\frac{1}{2} \frac{1}{2}}$, from which it may be concluded that n Log. r, or $n \times \log \cdot \frac{p+r}{p}=\log \cdot \frac{1}{1-1 \frac{1}{2}}$, and confequently that n is equal to the Logarithm of $\frac{1}{1-\sqrt{\frac{1}{2}}}$, divided by the Logarithm of $\frac{p+1}{p}$. And the fame demonftration will hold in any other Cafe.

> Example

To find in how many Trials A may with equal Chance undertake to throw all the Faces of a common Die.

The Logarithm of $\frac{1}{1-\sqrt{\frac{1}{2}}}=0.9621753$; the Logarithm of $\frac{p+1}{p}$ or $\frac{6}{5}=0.0791812:$ wherefore $n=\frac{0.9621753}{0.0701812}=12+$. From hence it may be concluded, that in 12 Cafts A has the wort of the Lay, and in 13 the beft of it.

$$
\text { Example } 2 .
$$

To find in how many Trials A may with equal Chance with a Die of thirty-fix Faces undertake to throw fix determinate Faces; or, in how many Trials he may with a pair of common Dice undertake to throw all the Doublets.

The Logarithm of $\frac{1}{1-\sqrt[5]{\frac{5}{3}}}$ being 0.9621753 , and the Logarithm of $\frac{p+1}{p}$ or $\frac{36}{35}$ being 0.0122345 ; it follows that the number of Cafts requifite to that effect is $\frac{0.9621753}{0.0122315}$, or 79 nearly.

But if it were the Law of the Play, that the Doublets muft be thrown in a given order, and that any Doublet happening to be thrown out of its Turn fhould go for nothing; then the throwing of the fix Doublets would be like the throwing of the two Aces fix times: to produce which, the number of Cafts requifite would be found by multiplying 35 by 5.668 , as appears from the Table annexed to out $v^{\text {th }}$ Problem; and confequently would be about 198.
N. B. The Fraction $\frac{1}{1-\sqrt{\frac{1}{2}}}$, may be reduced to another form
viz. $\frac{f}{\sqrt{ } / 2}$, which will facilitate the taking of its Logarithm.

P R O B L E M XLI.

Suppofing a regular Prifm baving a Faces marked I, b Faces marked ir, c Faces marked in, d Faces marked Iv, \&c. what is the Probability that in a certain number of throws n, fome of the Faces marked 1 will be thrown, as alfo fome of the Faces marked in?

> SOLUTION.

Make $a+b+c+d, \& c$. $=s$, then the Probability required will be expreffed by $\left.s^{n}-s-a n+s-a-b\right)^{n}$; the Demonftration

$$
-s-b n
$$

of which flowing naturally from the Method of arguing employed in the xxxix ${ }^{\text {th }}$ Problem, there can be no difficulty about it.

Example.

Suppofe it be required to find the Probability of throwing in 8 throws the two Chances v and vi, with a pair of common Dice.

The number of all the Chances upon two Dice being 36, whereof 4 belong to the Chance v, and 5 to the Chance VI; it follows that s ought to be interpreted by $36, a$ by 4 , and 6 by 5 : which being done, the Probability required will be expreffed by

128 The Doctrine of Chances.
$36^{8}-32^{8}+27^{8}$, which by help of a Table of Log. will be
$-31^{8}-$ found thus:
3^{68}
$\frac{36^{8}}{3^{6^{8}}}=\mathrm{I}, \frac{32^{8}}{3^{6^{8}}}=0.38975, \frac{31^{8}}{3^{6}}=0.30176, \frac{27^{8}}{30^{8}}=0.10012$, but $1-0.3^{8975-0.30176+0,10012=0.40861 \text {, and this }}$ being fubtracted from Unity, there remains 0.59 I 39 , and therefore the Odds againft throwing v and v_{I} in 8 throws are 59139 to 4086 I , that is about 13 to 9 .

But if it be required, that fome of the Faces marked i, fome of the Faces marked 11, and fome of the Faces marked III, be thrown, the Probability of throwing thofe Chances in a given number of throws n will be expreffed by $s^{n}-s-a n+s-a-b n-s-a-b-c n$

$$
\begin{aligned}
& -s-b{ }^{n}+s-a-c \\
& -s-c{ }^{n}+s-b-c
\end{aligned}
$$

And if the Faces marked iv are farther required to be thrown, the Probability of it will be expreffed by

$$
\begin{aligned}
& \begin{array}{r}
+s-b-d{ }^{\prime} \\
+\frac{s-c-d}{} \\
s^{2}
\end{array}
\end{aligned}
$$

Now the order of the preceding Solutions being manifeft, it will be eafy by bare infpection to continue them as far as there is occafion.

PROB.LEM XLII.

If A obliges bimfelf in a certain number of throws n with a pair of common Dice not only to throw the Cbances v and vI , but v before vi ; with this reftriction, that if be bappens to throw vi before v, be does not indeed lofe bis wager, but is to proceed as if nothing bad been done, fill deducting fo many throws as bave been vain from the number of throws which be bad at frrf given bim; to find the Probability of bis winning.

SOLUTION.

Let the number of Chances which there are for throwing v be called a, the number of Chances for throwing vi, b; the number of all the Chances upon two Dice \int, and the number of throws that. A takes $=n$. This being fuppofed,
$\mathbf{1}^{\circ}$. If A throws v the firft throw, of which the Probability is $\frac{a}{f}$, he has nothing more to do than to throw vi in $n-1$ times, of which the Probability is $1-\frac{\sqrt{-b})^{n-1}}{\rho^{n-1}}$, and therefore the Probability of throwing v the firft time, and throwing afterwards vi in $n-1$ times is $\frac{a}{\int} \times 1-\frac{\overline{-b}-1}{\rho^{n-1}}$.
2°, If A miffes v the firft time, and throws it the fecond, of which the Probability is $\frac{f-a}{\int} \times \frac{a}{f}$, then he is afterwards to throw VI in $n-2$ times, of which the Probability being $I-\frac{\sqrt{f-6} n-2}{\int^{n-2}}$ it follows that the Probability of miffing v the firft time, throwing it the fecond, and afterwards throwing vi, will be $\frac{s-a}{\int} \times \frac{a}{f}$. $\times \overline{\mathrm{I}-\frac{\overline{s_{-6}^{n-2}}}{s^{n-2}}}$.
3°. If A miffes v the two firft times, and throws it the third, then he is afterwards to throw vI in $n=3$ times, the Probability of all which is $\frac{\overline{f-a}^{\int}}{}{ }^{2} \times \frac{a}{f} \times 1-\frac{\overline{J-b}}{\rho^{n-3}}$; and fo on. Now all this added together conftitutes two geometric Progreffions, the number of whofe Terms in each is $n-1$.

Wherefore the Sum of the whole will be

$$
\frac{f^{n-1}-\sqrt{-a}{ }^{n-1}}{f^{n-1}}-\frac{a f-a b}{a-b} \times \frac{\overline{f-b}^{n-1}-\overline{f-a}{ }^{n-1}}{f^{n}}: \text { and }
$$

if a and b are equal, then the fecond part will be reduced to $-\overline{n-1} \times a \times \overline{s-a}{ }^{n-1} \times \frac{1}{/ n}$.

Now for the application of this to numbers; a in the Cafe propofed is $=4, b=5, s=36$. Let n be $=12$, and the Probability required will be found to be 0.44834 , which being fubtracted from unity the remainder will be 0.55166 , and therefore the Odds againft A are 55166 to 44834 , that is nearly as 21 to 17 .

But if the conditions of the Play were that A in 12 times fhould throw both vand vi, and that vi fhould come up before v, the Odds againft A would not be fo great; being only 54038 to 45962 , that is nearly as 20 to 17 .

It would not be difficult after what we have faid, tho' perhaps a little laborious, to extend thefe kinds of Solutions to any number of Chances given.

PROBLEM XLIII.

Any number of Cbances being given, to find the Probability of their being produced in a given order, without any limitation of the number of times in which they are to be produced.

SOLUTION.
1°. Let the Chances be a and b, and let it be required to produce them in the order a, b.

The Probability of producing a before b is $\frac{a}{a+b}$, which being fuppofed to have happened, b muft be produced of neceflity; and therefore the Probability of producing the Chances a and b in the given order a, b, is $\frac{a}{a+b}$.
2°. Let the Chances given be a, b, c, and let it be required to produce them in the order in which they are written; then the Probability of producing a before b or c is $\frac{a}{a+b+c}$; which being fuppofed, the Probability of producing b before c is by the preceding cafe $\frac{b}{b+c}$; after which c muft neceffarily be produced, and therefore the Probability of this cafe is $\frac{a}{a+b+c} \times \frac{b}{b+c}$.
3°. Let the Chances be a, b, c, d, and let it be required to produce them in the order in which they are written; then the Probability of producing a before all the reft is $\frac{a}{a+b+c+d}$; which being fuppofed, the Probability of prodocing b before all the remaining is $\frac{b}{b+c+d}$; which being fuppofed, the Probability of producing a before d is $\frac{c}{c+d}$. And therefore the Probability of the whole is. $\frac{a}{a+b+c+d} \times \frac{b}{b+c+d} \times \frac{c}{c+d}$; and in the fame manner may there Theorems be continued in infinitum.

And therefore if it was propofed to find the Probability of throwing with a pair of common Dice the Chances iv, v, vi, viri, ix, x before vir ; let the Chances be called refpectively a, b, c, d, e, f, and m, then the Probability of throwing them in the order they are writ in will be

But as the order in which they may be thrown is not the thing particularly required here, except that the Chances m are to be thrown the laft; fo it is plain that there will be as many different parts like the preceding as the pofition of the 6 Letters a, b, c, d, e, f, may be varied, which being 720 different ways, it follows, that in order to have a compleat Solution of this Queftion, there muft be 720 different parts like the preceding to be added together.

However the Chances iv and x, v and x , vi and viri being refpectively the fame, thofe 720 might be reduced to 90 , which being added together, and the Sum multiplied by 8 , we fhould have the Probability required.

Still thofe Operations would be laborious, for which reafon it will be fufficient to have an approximation, by fuppofing that all the Chances a, b, c, d, c, f, that is, $3,4,5,5,4,3$ are equal to the mean Chance 4 , which will make it that the Probability required will be expreffed by

$$
\begin{aligned}
& \frac{6 b}{6 b+m} \times \frac{5 b}{5 b+m} \times \frac{4 b}{4 b+m} \times \frac{2 b}{3 b+m} \times \frac{2 b}{2 b+m} \times \frac{b}{t+m} \text { or } \\
& \frac{24}{30} \times \frac{20}{26} \times \frac{16}{22} \times \frac{12}{18} \times \frac{8}{14} \times \frac{4}{10}=\frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 4 \cdot 4}{1 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13}=\frac{1024}{15015} ;
\end{aligned}
$$

and therefore the Odds againft throwing the Chances iv, v, vi, viIf, ix, x before vir are about 1399 to 1024 , or nearly 41 to 3 .

But the Solution might be made ftill more exact, if inftead of taking. 4 for the mean Chance, we find the feveral Probabilities of throwing all the Chances before vir, and take the fixth part of the Sum for the mean Probability; thus becaufe the feveral Probabilities of throwing all the Chances before vir are refpectively $\frac{3}{9}$, $\frac{4}{10}, \frac{5}{165}, \frac{5}{11}, \frac{4}{10}, \frac{3}{9}$, the Sum of all which is $\frac{392}{105}$, if we divide the whole by 6 , the Quotient will be $\frac{392}{990}$ or $\frac{59}{149}$ S 2 nearly,
13^{2} The Doctrine of Chances.
nearly, and this being fuppofed $=\frac{z}{z+j}$ wherein z reprefents the mean Chance, we fhall find $z=3 \frac{14}{15}$. And therefore the Probability of throwing all the Chances before vir, will be found to be $\frac{354}{444} \times \frac{295}{385} \times \frac{236}{326} \times \frac{177}{267} \times \frac{118}{208} \times \frac{59}{149}=0.065709$ nearly, which being fubtracted from Unity, the remaining is 0.934292 , and therefore the Odds againft throwing all the Chances before vir are 934292 to 65708 , that is about $14 \frac{1}{5}$ to I .

But if it was farther required not only to throw all the Chances before vir, but alfo to do it in a certain number of times affigned, the Problem might eafily be folved by imagining a mean Chance.

PR O B L E M XLIV.

If A, B, C play together on the following conditions; Firft that they fiall each of them Aake 1. Secondly that A and B fsall begin the Play; Thirdly, that the Lofer Ball yield bis place to the third Man, wbich is conftantly to be obferved afterwards; Fourtbly, that the Lofer Ball be fined a certain Sum p, wobich is to Serve to increafe the common Stock; Lafly, that be hall bave the wobole Sum depofited at firft, and increafed by the feveral Fines, who ghall firft beat the other two fucceffively: 'T is demanded what is the $A d-$ vantage or Difadvantage of A and B , whom we fuppofe to begin the Play.

Solution.
Let BA fignify that B beats A, and AC that A beats C, and fo let always the firft Letter denote the Winner, and the fecond the Lofer.

Let us fuppofe that B beats A the firft time; then let us inquire what the Probability is that the Set Chall be ended in any number of Games, and alfo what is the Probability which each Gamefter has of winning the Set in that given number of Games.

Firft, If the Set be ended in two Games, B muft neceffarily be the winner, for by Hypothefis he wins the firft time ; which may be expreffed by $B A, B C$.

Secondly, If the Set be ended in three Games, C muft be the winner, as appears by the following Scheme, viz. BA, CB, CA.

Thirdly, If the Set be ended in four Games, A mult be the winner, as appears by the Scheme BA, CB, AC, AB.

Fourtbly, If the Set be ended in five Games, B muft be the winner, which is thus expreffed, $\mathrm{BA}, \mathrm{CB}, \mathrm{AC}, \mathrm{BA}, \mathrm{BC}$.

Fiftbly, If the Set be ended in fix Games, C muft be the winner, as appears ftill by the following procefs, thus, $B A, C B, A C$, BA, CB, CA.

And this procefs recurring continually in the fame order needs not be profecuted any farther.

Now the Probability that the firft Scheme fhall take place is $\frac{1}{2}$, in confequence of the Suppofition made that B beats A the firft time; it being an equal Chance whether B beat C, or C beat B.

And the Probability that the fecond Scheme fhall take place is $\frac{1}{4}$: for the Probability of C 's beating B is $\frac{1}{2}$, and that being fuppofed, the Probability of his beating A will alfo be $\frac{1}{2}$; wherefore the Probability of C 's beating B, and then A_{2} will be $\frac{1}{2} \times \frac{1}{2}$ $=\frac{1}{4}$.

And from the fame confideration, the Probability that the third Scheme fhall take place is $\frac{1}{8}$: and fo on.

Hence it will be eafy to compofe a Table of the Probabilities which B, C, A have of winning the Set in any given number of Games; and alfo of their Expectations: which Expectations are the Proforbilities of winning multiplied by the common Stock depofited at firft ${ }_{m}$ and increafed fucceffively by the feveral Fines.

34 The Doctrine of Chances.

Table of the Probabilities, \&c.

	B	C	A
2	$\frac{1}{2} \times \overline{3+2 p}$		
3		$\frac{1}{4} \times \overline{3+3 p}$	
4			$\frac{1}{8} \times \overline{3+4 p}$
5	$\frac{1}{16} \times \overline{3+5 p}$		
6		$\frac{1}{32} \times \overline{3+6 p}$	
7			$\frac{1}{64} \times \overline{3+7 p}$
8	$\frac{1}{128} \times \overline{3+8 p}$		
9		$\frac{1}{256} \times \overline{3+9 p}$	
10 $\& c$			$\frac{1}{512} \times \overline{3}+\overline{10 p}$

Now the feveral Expectations of B, C, A may be fummed up by the following Lemma.

LEMMA.
$\frac{n}{b}+\frac{n+d}{b b}+\frac{n+2 d}{b^{3}}+\frac{n+3 d}{b^{4}}+\frac{n+4 d}{b^{5}}$, \&c. in infinitum, is equal to $\frac{n}{b-1}+\frac{{ }^{d}}{b-n^{2}}$.

Let the Expectations of B be divided into two Series, viz.

$$
\begin{array}{r}
\frac{3}{2}+\frac{3}{10}+\frac{3}{128}+\frac{3}{1024}, \& c . \\
+\frac{2 p}{2}+\frac{i p}{16}+\frac{8 p}{128}+\frac{11 p}{1024}, \& c .
\end{array}
$$

The firft Series conftituting a Geometric Progreffion continually decreafing, its Sum by the known Rules will be found to be $\frac{12}{7}$.

The fecond Series may be reduced to the form of the Series in our Lemma, and may be thus expreffed
$\frac{\rho}{2} \times \overline{\frac{2}{1}+\frac{5}{8}+\frac{8}{8^{2}}+\frac{11}{8^{3}}+\frac{14}{8^{4}}}$, \&c. wherefore dividing the whole by $\frac{p}{2}$, and laying afide the firt term 2, we fhall have the Series $\frac{5}{8}+\frac{8}{8^{2}}+\frac{11}{8^{3}}+\frac{14}{8^{4}}, 8 c$. which has the fame form as the Series of the Lemma, and may be compared with it : let therefore n be made $=5, d=3$, and $b=8$, and the Sum of the Series will be $\frac{5}{7}+\frac{3}{49}$ or $\frac{3^{8}}{49}$; to this adding the firft Term 2 which had been laid, afide, the new Sum will be $\frac{1,6}{49}$, and that being multiplied by $\frac{p}{2}$ whereby it had been divided, the product will be $\frac{68}{49} p$, which is the Sum of the fecond Series expreffing the Expectation of B : from whence it may be concluded that all the Expectations of B contained in both the abovementioned Series will be equal to $\frac{12}{7}+\frac{68}{49} p$.

And by the help of the fame Lemma, it will be found that all the Expectations of C will be equal to $\frac{6}{7}+\frac{\Delta 8}{49} p$.

It will be alfo found that all the Expectations of A will be equal to $\frac{3}{7}+\frac{31}{49} p$.
We have hitherto determined the feveral Expectations of the Gamefters upon the Sum by them depofited at firt, and alfo upon the Fines by which the common Stock is increafed : it now remains to. eftimate the feveral Rifks of their being fined; that is to fay, the Sum of the Probabilities of their being fined multiplied by the refpective Values of the Fines.

Now after the Suppofition made of A 's being beat the firft time, by which he is obliged to lay down his Fine p, B and C have an equal Chance of being fined after the fecond Game; which makes. the Rilk of each to be $=\frac{1}{2} p$, as appears by the following. Scheme.

$$
\frac{B A}{C B} \text { or } \frac{B A}{B C}
$$

In like manner, it will be found, that C and A have one Chance in four, for their being fined after the third Game, and confequently: that the Rifk of each is $\frac{1}{4} p$, according to the following Scheme.
iz6 The Doctrine of Chances.
$\frac{B A}{C B}$ or $\frac{B A}{C B}$

And by the like Procefs, it will be found that the Rifk of B and C after the fourth Game is $\frac{1}{8} p$.

Hence it will be eafy to compofe the following Table, which exprefles the Rifks of each Gamefter.

> Table of Riks.

	B	C	A
2	$\frac{1}{2} p$	$\frac{1}{2} p$	$\cdots--$
3	\cdots	$\frac{1}{4} p$	$\frac{1}{4} p$
4	$\frac{1}{8} p$	\cdots	$\frac{1}{8} p$
5	$\frac{1}{10} p$	$\frac{1}{16} p$	$\cdots \cdots$
6	$\cdots \cdots-$	$\frac{1}{32} p$	$\frac{1}{3^{2}} p$
7	$\frac{1}{64} p$	$\cdots-$	$\frac{1}{64} p$
8	$\frac{1}{128} p$	$\frac{1}{128} p$	\cdots
9	$\cdots \cdots$	$\frac{1}{256} p$	$\frac{1}{25^{6}} p$
$\& c$.			

In the Column belonging to B, if the vacant places were filled up by interpolating the Terms $\frac{1}{4} p, \frac{1}{3^{2}} p, \frac{1}{2 ; 6} p$, \&c. the Sum of the Rifks of B would compofe one uninterrupted geometric Progreffion, the Sum of whofe Terms would be $=p$; but the Terms interpolated conititute a geometric Progreffion whofe Sum is $=\frac{2}{7} p$: wherefore if from p there be fubtracted $\frac{2}{7} p$, there will remain $\frac{5}{7} p$ for the Sum of the Rifks of B.

In like manner it will be found that the Sum of the Rifks of C will $b e=\frac{6}{7} p$.

And the Sum of the Rifks of A, after his being fined the firft time, will be $\frac{3}{7} p$.
Now if from the feveral Expectations of the Gamefters, there be fubtracted each Man's Stake, and alfo the Sum of his Rifks, there will remain the clear Gain or Lofs of each of them.
Wherefore, from the Expectations of $B=\frac{12}{7}+\frac{68}{49} p$.
Subtracting firf his Stake
Then the Sum of his Rifks
There remains the clear Gain of $B=\overline{\frac{5}{7}+\frac{33}{49} p}$.
Likewife from the Expectations of $C=\frac{6}{7}+\frac{48}{49} p$.
Subtracting firf his Stake
Then the Sum of his Rifks
There remains the clear Gain of $C=-\frac{1}{7}+\frac{6}{49} p$.
In like manner, from the Expectations of $A=\frac{3}{7}+\frac{31}{49} p$. Subtracting, firf his Stake $=1$

Secondly, the Sum of his Rifks $=\quad \frac{3}{7} p$. Lafly, the Fine p due to the Stock by the Lofs of $\}=p$.
the firf Game
There remains the clear Gain of $A=-\frac{4}{7}-\frac{39}{49} p$.
But we had fuppofed, that in the beginning of the Play A was beaten; whereas A had the fame Chance to beat B, as B had to beat him : wherefore dividing the Sum of the Gains of B and A into two equal parts, each Part will be $\frac{-1}{14}-\frac{3}{49} p$, which confequently muft be reputed to be the Gain of each of them.
Corolearyi.

The Gain of C being $-\frac{1}{7}+\frac{6}{49} p$, let that be made $=0$, then p will be found to be $=\frac{7}{6}$. If therefore the Fine has the fame proportion to each Man's Stake as 7 has to 6, the Gamefters play all upon equal terms: But if the Fine bears a lefs proportion

138 The Doctrine of Chances.
to the Stake than 7 to $6, C$ has the difadvantage : thus fuppofing $p=\mathrm{I}$, his Lofs would be $\frac{1}{49}$, but if it bears a greater proportion to the Stake than 7 to $6, C$ has the advantage.

Coroleary 2.

If the common Stake were conftant, that is if there were no Fines, then the Probabilities of winning would be proportional to the Expectations; wherefore fuppofing $p=0$, the Expectations after the firtt Game would be $\frac{12}{7}, \frac{6}{7}, \frac{3}{7}$, whereof the firft belongs to B, the fecond to C, and the third to A : and therefore dividing the Sum of the Probabilities belonging to B and A into two equal parts, it will follow that the Probabilities of winning would be proportional to the numbers $5,4,5$, and therefore it is five to two before the Play begins that either A or B win the Set, or five to four that one of them that fhall be fixed upon wins it.

Coroleary 3 .

Hence likewife if three Gamefters A, B, C, are engaged in a Poule, and have not time to play it out ; but agree to divide (S) the Sum of the Stake and Fines, in proportion to their refpective Chances: $\frac{4}{7} S$ will be the Share of B, whom we fuppofe to have got one Game; $\frac{2}{7} S$ that of C, who thould next come in ; and $\frac{1}{7} S$ the Share of A who was laft beat. For, as they agree to give over playing, all confideration of the fubfequent Fines p is now fet afide, and the Cafe comes to that of the firft part of Corol. 2.

Or the fame thing may be fhortly demonftrated as follows.
Put $S=\mathrm{I}$, and the Share of $A=z$. Then B playing with C has an equal Chance for the whole Stake S, and for being reduced to the prefent Expectation of A; that is, $B \times$ Expectation is $\frac{1+z}{2}$. C has an equal chance for o, and for B 's prefent Expectation; that is, $C_{\text {s }}$ Expectation is $\frac{0+\frac{1}{2} \times \overline{1+z}}{2}=\frac{1+z}{4}$. But the Sum of the three Expectations $z+\frac{1}{2} \times \overline{1}+\bar{z}+\frac{1}{4} \times \overline{1+z}=S=1 ;$ or z $+\frac{3}{4} z\left(=\frac{7}{4} z\right)=\frac{1}{4}:$ and $z=\frac{1}{7}$, which is A 's Share; thofe of B and C being $\frac{1}{2} \times 1+\frac{1}{7}$, and $\frac{1}{4} \times 1+\frac{1}{7} ;$ or $\frac{4}{7}$ and $\frac{2}{7}$, refpectively.

PR O B L E M XLV.

If four Gamefters play on the conditions of the foregoing Problem, and be be to be reputed the Winner who beats the other three fuccefively, what is the Adrantage of A and B whom we fuppofe to begin the Play?

Solution.
Let BA denote as in the preceding Problem that B beats A, and AC that A beats C; and univerfally, let the firft Letter always denote the Winner, and the fecond the Lofer.

Let it be alfo fuppofed that B beats A the firft time: then let it be inquired what is the Probability that the Play fhall be ended in any number of Games; as alfo what is the Probability which each Gamefter has of winning the Set in that given number of Games.

Fir $/$, If the Set be ended in three Games, B muft neceffarily be the Winner; fince by hypothefis he beats A the firt Game, which is expreffed as follows :

1	$B A$
2	$B C$
3	$B D$

Secondly, If the Set be ended in four Games, C muft be the winner; as it thus appears.

3	$B A$
2	$\overline{C B}$
3	$C D$
4	$C A$

Thirdly, If the Set be ended in five Games, D will be the Winner ; for which he has two Chances, as it appears by the following Scheme.

1	BA	BA
2	$\overline{\mathrm{CB}}$	$\overline{\mathrm{BC}}$
3	DC	or
4	DB	
4	DA	DA
5	DB	DC

140 The Doctrine of Chances.
Fourtbly, If the Set be ended in fix Games, A will be the Winner; and he has three Chances for it, which are thus collecked.

1	BA	BA	BA
2	$\overline{\mathrm{CB}}$	$\overline{\mathrm{CB}}$	$\overline{\mathrm{BC}}$
3	DC	CD	DB
4	AD	AC	AD
5	AB	AB	AC
6	AC	AD	AB

Fifthly, If the Set be ended in feven Games, then B will have three Chances to be the Winner, and C will have two, thus;

1	$\overline{B A}$				
2	$\overline{C B}$	$\overline{\mathrm{CB}}$	$\overline{\mathrm{CB}}$	$\overline{\mathrm{BC}}$	$\overline{\mathrm{BC}}$
3	DC	DC	CD	DB	DB
4	AD	DA	AC	AD	DA
5	BA	BD	BA	CA	CD
6	BC	BC	BD	CB	CB
7	BD	BA	BC	CD	CA

Sixtbly, If the Set be divided in eight Games, then D will have two Chances to be the Winner, C will have three, and B alfo three, thus;

1	BA							
2	$\overline{\mathrm{CB}}$	$\overline{\mathrm{CB}}$	$\overline{\mathrm{CB}}$	$\overline{\mathrm{CB}}$	$\overline{\mathrm{CB}}$	$\overline{\mathrm{BC}}$	$\overline{\mathrm{BC}}$	$\overline{\mathrm{BC}}$
3	DC	DC	DC	CD	CD	DB	DB	DB
4	AD	AD	DA	AC	AC	AD	AD	DA
5	BA	AB	BD	BA	AB	CA	AC	CD
6	CB	CA	CB	DB	DA	BC	BA	BC
7	CD	CD	CA	DC	DC	BD	BD	BA
8	CA	CB	CD	DA	DB	BA	BC	BD

Let now the Letters by which the Winners are denoted be written in order, prefixing to them the numbers which exprefs their feveral Chances for winning; in this manner.
\square

Then carrying this Table a littler farther, and examining the Formation of thefe Letters, it will appear; Fir ℓ, that the Letter B is always found fo many times in any Rank, as the Letter A is found in the two preceding Ranks: Secondly, that C is found fo many times in any Rank as B is found in the preceding Rank, and D in the Rank before that. Tbirdly, that D is found fo many times in any Rank, as C is found in the preceding, and B in the Rank before that: And, Fourtbly, that A is found fo many times in any Rank as D is found in the preceding Rank, and C in the Rank before that.

From all which it may be concluded, that the Probability which the Gamefter B has of winning the Set in any number of Games, is, $\frac{1}{2}$ of the Probability which A has of winning it one Game fooner, together with $\frac{1}{4}$ of the Probability which A has of winning it two Games fooner.

The Probability which C has of winning the Set in any given number of Games, is $\frac{1}{2}$ of the Probability which B has of winning it one Game fooner, together with $\frac{1}{4}$ of the Probability which D has of winning it two Games fooner.

The Probability which D has of winning the Set in any number of Games is $\frac{1}{2}$ the Probability which C has of winning it one Game fooner, and alfo $\frac{1}{4}$ of the Probability which B has of winning it two Games fooner.

The Probability which A has of winning the Set in any number of Games is $\frac{1}{2}$ of the Probability which D has of winning it one Game fooner, and alfo $\frac{1}{4}$ of the Probability which C has of winning. it two Games fooner.

Thefe things being obferved, it will be eafy to compofe a Table of the Probabilities which B, C, D, A have of winning the Set in any number of Games, as alfo of their Expectations, which will be as follows:

142 The Doctrine of Chances.

The Terms whereof each Column of this Table is compofed, being not eafily fummable by any of the known Methods, it will be convenient, in order to find their Sums to ufe the following Analy is.

Let $\mathrm{B}^{\prime}+\mathrm{B}^{\prime \prime}+\mathrm{B}^{\prime \prime \prime}+\mathrm{B}^{\prime V}+\mathrm{B}^{\nu}+\mathrm{B}^{\nu l}$, \&x. reprefent the refpective Probabilities which B has of winning the Set, in any number of Games anfwering to $3,4,5,6,7,8, \& \mathbf{c}$. and let the Sum of thefe Probabilities in infinitum be fuppofed $=y$.

In the fame manner, let $\mathrm{C}^{\prime}+\mathrm{C}^{\prime l}+\mathrm{C}^{\prime l \prime}+\mathrm{C}^{I V}+\mathrm{C}^{\nu}+\mathrm{C}^{{ }^{\prime \prime}}, 8 \mathrm{c}$. reprefent the Probabilities which C has of winning, which fuppofe $=z$.

Let the Probabilities which D has of winning be reprefented by $\mathrm{D}^{\prime}+\mathrm{D}^{\prime \prime}+\mathrm{D}^{\prime \prime \prime}+\mathrm{D}^{\prime \nu}+\mathrm{D}^{\nu}+\mathrm{D}^{\nu l}$, \&c. which fuppofe $=v$.

Laftly, Let the Probabilities which A has of winning be reprefented by $A^{\prime}+A^{\prime \prime}+A^{\prime \prime \prime}+A^{\prime \prime}+A^{\nu}+A^{\nu \prime}, \& c$. which fuppofe $=x$.

Now from the Obfervations fet down before in the Table of Probabilities, it will follow, that

$$
\begin{aligned}
& \mathrm{B}^{\prime}=\mathrm{B}^{\prime} \\
& \mathrm{B}^{\prime \prime}=\mathrm{B}^{\prime \prime} \\
& \mathrm{B}^{n l}=\frac{1}{2} \mathrm{~A}^{\prime \prime}+\frac{1}{4} \mathrm{~A}^{l} \\
& \mathrm{~B}^{\prime V}=\frac{1}{2} \mathrm{~A}^{\prime l \prime}+\frac{1}{4} \mathrm{~A}^{\prime l} \\
& \mathrm{~B}^{V}=\frac{1}{2} \mathrm{~A}^{l /}+\frac{1}{4} \mathrm{~A}^{\prime l} \\
& \mathrm{~B}^{\prime l}=\frac{1}{2} \mathrm{~A}^{V}+\frac{1}{4} \mathrm{~A}^{l V} \\
& \mathrm{Sc} .
\end{aligned}
$$

From which Scheme we may deduce the Equation following, $y=\frac{1}{4}+\frac{3}{4} x$: for the Sum of the Terms in the firft Column is equal to the Sum of the Terms in the other two. But the Sum of the Terms in the firft Column is $=y$ by Hypothefis; wherefore y ought to be made equal to the Sum of the Terms in the other two Columns.

In order to find the Sum of the Terms of the fecond Column, I argue thus,

$$
\mathrm{A}^{\prime}+\mathrm{A}^{\prime \prime}+\mathrm{A}^{m}+\mathrm{A}^{\nu}+\mathrm{A}^{\nu}+\mathrm{A}^{\nu}, \text { \&c. }=x \text { by Hypoth. }
$$

Theref. $\mathrm{A}^{\prime \prime}+\mathrm{A}^{m \prime}+\mathrm{A}^{l \nu}+\mathrm{A}^{\nu}+\mathrm{A}^{\nu l}, \& \mathrm{c}=x-\mathrm{A}^{i}$
and $\frac{1}{2} A^{l}+\frac{1}{2} A^{M l}+\frac{1}{2} A^{\nu}+\frac{1}{2} A^{\nu}+\frac{1}{2} A^{\nu l}, \& c=\frac{1}{2} x-\frac{1}{2} A^{\prime}$
Then adding $\mathrm{B}^{l}+\mathrm{B}^{\prime \prime}$ on both Sides of the laft Equation, we Shall have

$$
\begin{aligned}
& \mathrm{B}^{l}+\mathrm{B}^{\prime \prime}+\frac{1}{2} \mathrm{~A}^{\prime \prime}+\frac{1}{2} \mathrm{~A}^{\prime \prime \prime}+\frac{1}{2} \mathrm{~A}^{l V}+\frac{1}{2} \mathrm{~A}^{\nu}+\frac{1}{2} \mathrm{~A}^{\nu l}, \& \mathrm{C} . \\
& =\frac{1}{2} x-\frac{1}{2} \mathrm{~A}^{l}+\mathrm{B}^{l}+\mathrm{B}^{\prime \prime} .
\end{aligned}
$$

But $\mathrm{A}^{l}=0, \mathrm{~B}^{l}=\frac{1}{4}, \mathrm{~B}^{\prime \prime}=0$, as appears from the Table: wherefore the Sum of the Terms of the fecond Column is $=\frac{1}{2} x$ $+\frac{1}{4}$.

The Sum of the Terms of the third Column is $\frac{1}{4} x$ by Hypothefis; and confequently the Sum of the Terms in the fecond and third Columns is $=\frac{3}{4} x+\frac{1}{4}$, from whence it follows that the Equation $y=\frac{1}{4}+\frac{3}{4} x$ had been rightly determined.

144 The Doctrine of Chances.
And by a reafoning like the preceding, we fhall find $z=\frac{1}{2} y$ $+\frac{1}{4} v$, and alfo $v=\frac{1}{2} z+\frac{1}{4} y$, and laftly $x=\frac{1}{2} v+\frac{1}{4} z$.

Now thefe four Equations being refolved, it will be found that

$$
\begin{aligned}
& \mathrm{B}^{\prime}+\mathrm{B}^{\prime \prime}+\mathrm{B}^{\prime \prime \prime}+\mathrm{B}^{(V)}+\mathrm{B}^{\nu}+\mathrm{B}^{\nu \prime}, 8 \mathrm{c} .=y=\frac{5^{6}}{149} \\
& \mathrm{C}^{\prime}+\mathrm{C}^{\prime l}+\mathrm{C}^{\prime \prime \prime}+\mathrm{C}^{I V}+\mathrm{C}^{y}+\mathrm{C}^{n \prime} ; \& \mathrm{c} .=z=\frac{36}{149} \\
& \mathrm{D}^{\prime}+\mathrm{D}^{\prime \prime}+\mathrm{D}^{\prime \prime \prime}+\mathrm{D}^{\prime V}+\mathrm{D}^{\nu}+\mathrm{D}^{\nu l}, 8 \mathrm{c} .=v=\frac{3_{2}}{149} \\
& \mathrm{~A}^{l}+\mathrm{A}^{\prime \prime}+\mathrm{A}^{\prime \prime \prime}+\mathrm{A}^{\nu \nu}+\mathrm{A}^{\nu}+\mathrm{A}^{\nu l}, \& \mathrm{c} .=x=\frac{25}{149}
\end{aligned}
$$

Hitherto we have determined the Probabilities of winning: but in order to find the feveral Expectations of the Gamefters, each Term of the Series expreffing thofe Probabilities is to be multiplied by the refpective Terms of the following Series,
$4+3 p, 4+4 p, 4+5 p, 4+6 p, 4+7 p, 4+8 p, 8 \mathrm{c}$.
The firft part of each product being no more than a Multiplication by 4, the Sums of all the firft parts of thofe Products are only the Sums of the Probabilities multiplied by 4 ; and confequently are $4 y, 4 z, 4 v, 4 x$, or $\frac{224}{1+9}, \frac{144}{149}, \frac{128}{149}, \frac{100}{149}$, refpectively.

But to find the Sums of the other parts,
Let $3 \mathrm{~B}^{\prime} p+4 \mathrm{~B}^{\prime \prime} p+5 \mathrm{~B}^{\prime \prime \prime} p+6 \mathrm{~B}^{\prime \prime} p, \& \mathrm{c}$. be $=p t$.
$3 \mathrm{C}^{\prime} p+4 \mathrm{C}^{\prime} p+5 \mathrm{C}^{\prime \prime} p+6 \mathrm{C}^{\prime \prime} p$, \&cc. be $=p s$.
${ }_{3} \mathrm{D}^{\prime} p+-4 \mathrm{D}^{\prime \prime} p+5 \mathrm{D}^{\prime l} p+6 \mathrm{D}^{\prime \prime} p, 8 c \mathrm{c}$. be $=p r$.
$3 A^{\prime} p+4 \mathrm{~A}^{l} p+5 \mathrm{~A}^{\prime l} p+6 \mathrm{~A}^{\prime \prime} p ; 8 c$. be $=p q$.
Now fince, $3 \mathrm{~B}^{\prime}=3 \mathrm{~B}^{\prime}$

$$
\begin{aligned}
& 4 \mathrm{~B}^{\prime \prime}=4 \mathrm{~B}^{\prime \prime} \\
& 5 \mathrm{~B}^{\prime \prime \prime}=\frac{5}{2} \mathrm{~A}^{\prime \prime}+\frac{5}{4} \mathrm{~A}^{2} \\
& 6 \mathrm{~B}^{\prime V}=\frac{6}{2} \mathrm{~A}^{\prime l \prime}+\frac{6}{4} \mathrm{~A}^{\prime l} \\
& 7 \mathrm{~B}^{V}=\frac{7}{2} \mathrm{~A}^{l V}+\frac{7}{4} \mathrm{~A}^{\prime l \prime} \\
& 8 \mathrm{~B}^{V l}=\frac{8}{2} \mathrm{~A}^{V}+\frac{8}{4} \mathrm{~A}^{\prime l}
\end{aligned}
$$

it follows that $t=\frac{3}{4}+\frac{3}{4} q+x$; for 1°, the firft Column is $=t$ by Hypotbefis.
$2^{\circ}, 3 \mathrm{~A}^{\prime}+4 \mathrm{~A}^{\prime \prime}+5 \mathrm{~A}^{\prime \prime \prime}+6 \mathrm{~A}^{\prime \prime}+7 \mathrm{~A}^{\nu}, \dot{8} \mathrm{c} .=q$ by Hypothefis.
$3^{\circ}, A^{l}+A^{\prime \prime}+A^{\prime \prime \prime}+A^{\nu}+A^{\nu}$, \&cc. has been found $=\frac{25}{49}$ $=$ to the value of x.

The Doctrine of Chances.

Wherefore adding thefe two Equations together, we fhall have $4 \mathrm{~A}^{\prime}+5 \mathrm{~A}^{\prime \prime}+6 \mathrm{~A}^{\prime \prime \prime}+7 \mathrm{~A}^{\prime \prime}+8 \mathrm{~A}^{V}, 8 \mathrm{c} .=q+x$, or $\frac{4}{2} A^{l}+\frac{5}{2} A^{\prime \prime}+\frac{6}{2} A^{\prime \prime \prime}+\frac{7}{2} A^{\prime \prime}+H^{-} \frac{8}{2} A^{\nu}, \quad \& c c .=\frac{1}{2} q+\frac{1}{2} x$.

But $\mathrm{A}^{l}=0$, therefore there remains ftill

$$
\frac{5}{2} \mathrm{~A}^{\prime \prime}+\frac{6}{2} \mathrm{~A}^{\prime \prime \prime}+\frac{7}{2} \mathrm{~A}^{\boldsymbol{N}}+\frac{8}{2} \mathrm{~A}^{\nu}, 8 \mathrm{c} .=\frac{1}{2} q+\frac{1}{2} x .
$$

Now the Terms of this lant Series, together with ${ }_{3} B^{l}+4 B^{\prime \prime}$, compore the fecond Column : but $3 \mathrm{~B}^{\prime}=\frac{3}{4}$ and $4 \mathrm{~B}^{\prime \prime}=0$, as appears from the Table; confequently the Sum of the Terms of the fecond Column is $=\frac{3}{4}+\frac{1}{2} q+\frac{1}{2} x$.
By the fame Method of proceeding, it will be found that the Sum of the Terms of the third Column is $=\frac{1}{4} q+\frac{1}{2} x$.
From whence it follows, that $y=\frac{3}{4}+\frac{1}{2} q+\frac{1}{2} x+\frac{1}{4} q+\frac{1}{2} x$ or $t=\frac{3}{4}+\frac{3}{4} q+x$.
And by the fame way of reafoning, we fhall find

$$
\begin{aligned}
& s=\frac{1}{2} t+\frac{1}{2} y+\frac{1}{4} r+\frac{1}{2} v, \text { and alfo } \\
& r=\frac{1}{2} s+\frac{1}{2} z+\frac{1}{4} t+\frac{1}{2} y, \text { and lafly } \\
& q=\frac{1}{2} r+\frac{1}{2} v+\frac{1}{4} s+\frac{1}{2} z .
\end{aligned}
$$

But for avoiding confufion, it will be proper to reftore the values of x, y, z, v, which being done, the Equations will ftand as follows.

$$
\begin{aligned}
& t=\frac{3}{4}+\frac{3}{4} q+\frac{25}{149} \text { or } t=\frac{547}{596}+\frac{3}{4} q . \\
& s=\frac{44}{14}+\frac{1}{2} t+\frac{1}{4} r . \\
& r=\frac{46}{14}+\frac{1}{2} s+\frac{1}{4} t . \\
& q=\frac{34}{149}+\frac{1}{2} r+\frac{4}{4} s .
\end{aligned}
$$

Now the foregoing Equations being folved, it will be found that $t=\frac{4555^{6}}{22201}, s=\frac{38724}{22201}, r=\frac{37600}{22201}, q=\frac{33547}{22201}$.

From which we may conclude that the feveral Expectations of $B, C, D, A, \& c$. are refpectively,

Firf, $4 \times \frac{56}{149}+\frac{45536}{22201} p ;$ Secondly, $4 \times \frac{36}{149}+\frac{38724}{22201} p$.
Thirdly, $4 \times \frac{32}{149}+\frac{37600}{22201} p ;$ Fourthly, $4 \times \frac{25}{149}+\frac{33547}{22201} p$.
The Expectations of the Gamefters being found, it will be ne ceffary to find the Rifks of their being fined, or otherwife what Sum each of them ought jufly to give to have their Fines infured. In order to which, let us form fo many Schemes as are fufficient to find the Law of their Procefs.

And Firff, we may obferve, that upon the Suppofition of B beating A the firft Game, in confequence of which A is to be fined, B and C have one Chance each for being fined the fecond Game, as it thus appears:

$$
\begin{array}{l|l}
1 & \frac{\mathrm{BA}}{} \frac{\mathrm{BA}}{2} \\
{ }_{2} \mathrm{CB} & \overline{\mathrm{BC}}
\end{array}
$$

Secondly, that C has one Chance in four for being fined the third Game, B one Chance likewife, and D two; according to the following Scheme.

1	BA	BA	BA	$\frac{\mathrm{BA}}{2}$
2	CB	CB	$\frac{\mathrm{BC}}{\mathrm{BC}}$	$\frac{\mathrm{BC}}{\mathrm{BC}}$
3	DC	CD	DB	BD

Thirdly, that D has two Chances in eight for being fined the fourth Game, that A has three, and C one according to the following Scheme.

1	BA	BA	$\frac{\mathrm{BA}}{\mathrm{BA}}$	$\frac{\mathrm{BA}}{}$	$\frac{\mathrm{BA}}{}$	
2	$\frac{\mathrm{CB}}{}$	$\frac{\mathrm{CB}}{\mathrm{CB}}$	$\frac{\mathrm{CB}}{\mathrm{CB}}$	$\frac{\mathrm{CB}}{\mathrm{BC}}$	$\frac{\mathrm{BC}}{}$	
3	DC	DC	CD	CD	DB	DB
4	AD	DA	AC	CA	AD	DA

N. B. The two Combinations $\mathrm{BA}, \mathrm{BC}, \mathrm{BD}, \mathrm{AB}$, and BA, BC, BD, BA, are omitted in this Scheme as being fuperfluous; their difpofition fhewing that the Set muft have been ended in three Games, and confequently not affecting the Gamefters as to the Probability of their being fined the fourth Game; yet the number of all the Chances muft be reckoned as being eight; fince the Probability of any one Circumftance is but $\frac{1}{8}$.

Thefe Schemes being continued, it will eafily be perceived that the circumftances under which the Gamefters find themfelves, in refpect of their Rifks of being fined, fland related to one another in the fame manner as did their Probabilities of winning; from which

The Doctrine of Chances.

which confideration a Table of the Rifks may eafily be compofed as follows.

ATABLe of Rifks.

		B	C	D	A
l	2	$\frac{1}{2} p$	$\frac{1}{2} p$		
ll	3	$\frac{1}{4} p$	$\frac{1}{4} p$	$\frac{2}{4} p$	
lli ${ }^{\circ}$	4		$\frac{1}{8} P$	$\frac{2}{8} \boldsymbol{p}$	$\frac{3}{8} p$
IV	5	$\frac{3}{16} p$	$\frac{2}{16} p$	$\frac{2}{10} p$	${ }^{\frac{3}{10}} p$
V	6	$\frac{6}{32} p$	$\frac{5}{32} p$	$\frac{2}{32} p$	$\frac{3}{32} p$
Vl	7	$\frac{32}{\frac{6}{64} p}$	$\frac{8}{04} p$	$\frac{8}{64} p$	$\frac{4}{42}$
Vll	8	$\frac{7}{128} p$	$\frac{8}{128} p$	$\frac{1.4}{128} p$	
Vll	9	$\frac{17}{256} p$	$\frac{15}{250} p$	$\frac{14}{256} p$	$\frac{128}{256}$

Wherefore fuppofing $B^{\prime}+\mathrm{B}^{\prime \prime}+\mathrm{B}^{\prime \prime \prime}$, \&c. $\mathrm{C}^{l}+\mathrm{C}^{\prime \prime}+\mathrm{C}^{\prime \prime \prime}$, \&c. $D^{\prime}+D^{\prime \prime}+D^{\prime \prime \prime}, \& c . A^{l}+A^{\prime \prime}+A^{\prime \prime \prime}$, \&c. to repreent the feveral Probabilities; and fuppofing that the feveral Sums of thefe Probabilities are refpectively y, x, z, v, we fhall have the following Equations $y=\frac{3}{4}+\frac{3}{4} x ; z=\frac{1}{2}+\frac{1}{2} y+\frac{1}{4} v ; v=\frac{1}{4}+\frac{1}{2} z+\frac{1}{4} y$; $x=\frac{1}{2} v+\frac{1}{4} z$. Which Equations being folved we Gall have $y=$ $\frac{243}{149}, z=\frac{252}{149}, v=\frac{224}{149}, x=\frac{175}{149}$.

Let now every one of thofe Fractions be multiplied by p, and the Products $\frac{243}{149} p, \frac{.252}{149} p, \frac{224}{149} p, \frac{175}{149} p$ will exprefs the refpective Rinks of B, C, D, A, or the Sums they might juftly give to have their Fines infured.

But if from the feveral Expectations of the Gamefters there be fubtracted, Firft, the Sums by them depofited in the beginning of the Play, and Secondly, the Rifks of their Fines, there will remain the clear Gain or Lofs of each. Wherefore

From the Expectations of $B=\frac{224}{149}+\frac{45536}{22201} p$. Subtracting hiṣ own Stake $=\mathrm{I}$
And alfo the Sum of his Rinks $=\frac{243}{149} p$.
There remains his clear Gain $=\frac{75}{149}+\frac{9329}{2.2201} p$.
From the Expectations of $C=\frac{144}{149}+\frac{38724}{22201} p$. Subtracting his own Stake $=1$
And alfo the Sum of his Rifks $=\quad . \quad \frac{252}{149} p$.
There remains his clear Gain $=-\frac{5}{149}+\frac{1176}{22201} p$.
From the Expectations of $D=\frac{128}{149}+\frac{37600}{22201} p$. Subtracting his own Stake $=I$
And alfo the Sum of his Rifks $=\quad \frac{224}{149} p$.
There remains his clear Gain $=-\frac{21}{149}+\frac{4224}{22201} p$.
From the Expectations of $A=\frac{100}{149}+\frac{33547}{22201} p$. Subtracting his own Stake $=\mathbf{I}$
And alro the Sum of his Rifks=
$\frac{175}{149} p$
Laftly, the Fine due to the
Stock by the Lofs of the
firft Game
p.
There remains his clear Gain $=-\frac{49}{149}+\frac{14729}{22201} p$.
The foregoing Calculation being made upon the Suppofition of B beating A in the beginning of the Play, which Suppofition neither affects C nor D, it follows that the Sum of the Gains between B and A ought to be divided equally; then their feveral Gains will ftand as follows:

$$
\text { Gain of }\left\{\begin{array}{l}
\left\{\begin{array}{l}
A=\frac{13}{149}-\frac{27 \times 0}{27201} p \\
B=\frac{13}{149}-\frac{2700}{2201} p \\
C=-\frac{1}{149}+\frac{125}{22201} p \\
D=-\frac{21}{119}+\frac{424}{22201} p
\end{array}\right. \\
\text { Sum of the Gains }=\frac{0}{0}
\end{array}\right.
$$

If $\frac{13}{149}-\frac{2700}{2.201} p$, which is the Gain of A or B be made $=0$; then p will be found $=\frac{1937}{2700} ;$ from which it follows, that if each Man's Stake be to the Fine in the proportion of 2700 to 1937, then A and B are in this cafe neither Winners nor Lofers; but C wins $\frac{1}{225}$ which D lofes.

And in the like manner may be found what the proportion between the Stake and the Fine ought to be, to make C or D play without: advantage or difadvantage ; and alfo what this proportion ought to be, to make them play with any advantage or difadvantage given.

> Corollary i.

A Spectator S might at firf, in confideration of the Sum $4+7 p$ paid him in hand, undertake to furnifh the four Gamefters with Stakes, and pay all their Fines.

Corollary 2.
If the Stock is confiderably increafed, and the Gamefters agree either to pay no more Fines, or to give over playing, then
1°. If we fuppofe B to have got the laft Game, by beating out A, and call the Stock Unity; the Expectations, or Shares, belonging to B, C, D, A, refpectively, will be $\frac{56}{149}, \frac{36}{149}, \frac{32}{149}$, $\frac{25}{149}$.
2°. If B has got 2 Games, by beating D and A fucceffively, the Shares of B, C, D, A, are $\frac{87}{149}, \frac{28}{149}, \frac{18}{149}, \frac{16}{149}$. For B has now an equal Chance for the whole Stake, or for the loweft Chance of the former Cafe: that is, his Expectation is worth
$\frac{1}{2} \times \overline{I+\frac{25}{149}}=\frac{87}{149} . C$ has an equal Chance for O_{2} and for $\frac{56}{149}$; that is, his Expectation is $\frac{28}{149}$, and in the fame way the Numerators of the Expectations of D and A are found.

Corollary 3.

If the proportion of Skill between the Gamefters be given, then their Gain or Lofs may be determined by the Method ufed in this and the preceding Problem.

Corollary 4.

If there be never fo many Gamefters playing on the conditions of this Problem, and the proportion of Skill between them all be fuppoled to be equal, then the Probabilities of winning or of being fined may be determined as follows.

Let $\overline{\mathrm{B}^{\prime}}, \overline{\mathrm{C}^{\prime}}, \overline{\mathrm{D}^{\prime}}, \overline{\mathrm{E}^{\prime}}, \overline{\mathrm{F}^{\prime}}, \overline{\mathrm{A}^{\prime}}$, denote the Probabilities which B, C, D, E, F, A have of winning the Set, or of being fined in any number of Games; and let the Probabilities of winning or of being fined in any number of Games lefs by one than the preceding, be denoted by $\overline{B^{\prime \prime}}, \overline{C^{\prime \prime}}, \overline{\mathrm{D}^{\prime \prime}}, \overline{\mathrm{E}^{\mu \prime}}, \overline{\mathrm{F}^{\prime \prime}}, \overline{\mathrm{A}^{\prime \prime}}$: and fo on; then I fay that

$$
\begin{aligned}
& \overline{B^{\prime}}=\frac{1}{2} \overline{A^{\prime \prime}}+\frac{1}{4} \overline{A^{\prime \prime \prime}}+\frac{1}{8} \overline{A^{I V}}+\frac{1}{16} \overline{A^{V}} \\
& \overline{\mathbf{C}^{\prime}}=\frac{1}{2} \overline{\mathrm{~B}^{\prime}}+\frac{1}{4} \overline{\mathrm{~F}^{\prime \prime \prime}}+\frac{1}{8} \overline{\mathrm{E}^{I V}}+\frac{1}{16} \overline{\mathrm{D}^{\nu}} \\
& \overline{\mathrm{D}^{\prime}}=\frac{1}{2} \overline{\mathrm{C}^{\prime \prime}}+\frac{1}{4} \overline{\mathrm{~B}^{U I}}+\frac{1}{8} \overline{\mathrm{~F}^{I V}}+\frac{1}{16} \overline{\mathrm{E}^{V}} \\
& \overline{\mathrm{E}^{\prime \prime}}=\frac{1}{2} \overline{\mathrm{D}^{\prime \prime}}+\frac{1}{4} \overline{\mathrm{C}^{\prime \prime \prime}}+\frac{1}{8} \overline{\mathrm{~B}^{I V}}+\frac{1}{16} \overline{\mathrm{~F}^{\nu}} \\
& \overline{F^{l}}=\frac{1}{2} \overline{\mathrm{E}^{\prime \prime}}+\frac{1}{4} \overline{\mathrm{D}^{\prime l}}+\frac{1}{8} \overline{\mathrm{C}^{/ V}}+\frac{1}{16} \overline{\mathrm{~B}^{V}} \\
& \overline{\mathrm{~A}^{\prime}}=\frac{1}{2} \overline{\mathrm{~F}^{\prime \prime}}+\frac{1}{4} \overline{\mathrm{E}^{\prime \prime}}+\frac{1}{8} \overline{\mathrm{D}^{V}}+\frac{1}{16} \overline{\mathrm{C}^{V}}
\end{aligned}
$$

Now the Law of thefe relations being vifible, it will be eafy to extend it to any other number of Gamefters.

$$
\text { Corollary } 5 .
$$

If there be feveral Series fo related to one another, that each Term of one Series may have a certain given proportion to fome one affigned Term in each of the other Series, and that the order of thefe proportions be conftant and uniform, then will all thofe Series be exactly fummable.

REMARK.
As the Application of the Doctrine contained in thefe Solutions and Corollaries may appear difficult when the Gamefters are many, and when it is required to put an end to the play by a fair diftribution of the money in the Poule; which I look upon as the moft ufeful Queftion concerning this Game: I fhall explain this Subject a little more particularly.

1. Let us then Suppofe any number of Gamefters, $n+1$ (as, in our Scheme, 6) and having written down fo many Letters

Number of Games won by B	$n-5$	\bigcirc	$\left.\begin{array}{\|ccccc} A \\ B \end{array}\right\} \begin{array}{lllll} & C & D & E & F \\ b & c & d & e & f \end{array}$
		I	$B C D E F A$
	$n-4$ $n-3$	II	$b^{\prime \prime} c^{\prime \prime} d^{\prime \prime} c^{\prime \prime} f^{\prime \prime} a^{\prime \prime}$
	n-2	III	$b^{\prime \prime \prime} c^{\prime \prime \prime} d^{\prime \prime l} e^{\prime \prime \prime} f^{\prime l l} a^{\prime \prime \prime}$
	$n-1$	IV	$b^{W V} c^{V V} d^{W V} e^{i V} f^{V V} a^{I V}$
	n	V	10000

is fixt, and before the play is begun. Where note that the Letter b fignifies ambiguoufly the Expectation of A or of B : and this Cafe being particular, not to occur again in the fame Poule, may be feparated from the others by a line.

We fhall always fuppofe B to be the Winner of the firft Game; and that A takes the loweft place in the fecond Row of Capitals. Under thefe repeat $n-1$ Rows of the fmall Letters which, with the fmall ftrokes or dots affixed to them mark the Expectations of the feveral Gamefters, when any one Gamefter has got as many Games as is the Number of dots, or that which is marked in Roman Characters to the right of the Row. For it is to be obferved, that, after the firt Game, the fmall Letters thus marked do not, unlefs by accident, fignify the Expectations of the particular Gamefters at firft denoted by their Capitals; but the Expectations which belong to the Rank and Column where any Letter fands. For Example, $b^{\prime \prime \prime}$ does not denote the Expectations of him who was fuppofed to get the firft Game, unlefs perhaps he has got two more fucceffively; but indefinitely, thofe of whatever Gamefter has got 3 Games following. And the other Letters of the fame Row, as $c^{\prime l l}, d^{l l \prime}, \epsilon^{\prime l l}$, fignify the fimultaneous Expectations of the three Gamefters that follow him in the Order of playing.
2. This

152 The Doctrine of Chances.

2. This preparation being made, it will be obvious in what manner the Expectations are varied by the Event of every Game ; and how they are always reducible to known Numbers.

For if we fuppofe B, the Gamefter who is in Play, to have got 3 Games, for inftance, and to want two more of the Poule; then his prefent Expectation being $b^{\prime \prime \prime}$, if he wins the next Game which he is to play with C, the Confequence will be ; I°. His own Expectations will be changed into $b^{W V}$; having now got 4 Games. 2°. All the other Expectations in the fame Row, will likewife be transferred to the next inferior (IV.) but marked each by the preceding Letter of the Alphabet: that is, $d^{\prime \prime \prime}$ becomes $c^{d^{V}}$, $e^{\prime l /}$ becomes $d^{I V}$, $\& x$. excepting only $c^{\prime \prime l}$, the Expectation of him who loft the Gaine, which is thereby reduced to the loweft Expectation $a^{\prime \prime}$. And if B had already gained $(n-r=) 4$ Games, and confequently wanted but one; if he gains this, all the Expectations $c^{L^{V}}, d^{V^{V}}, e^{I V}$, \&cc. will vanifh together, while $b^{\text {IV }}$ becomes $=\mathrm{r}$, the Exponent of Certainty.

But if B lofes his Game with C, all the Expectations, of whatever Rank, are transferred to the Rank I, and their Ratios are reftored as when the firft Game was won: only the Letters are changed into the next preceding. As $b^{\prime \prime l}$ becomes $a^{l}, c^{\prime l l}$ becomes b^{l}, $d^{\prime \prime \prime}$ becomes c^{l}, and fo on.
3. Now there being fuppofed an equal Chance of B's winning and lofing a Game ; any Expectation of his, as when he has got 3 Games, will be thus expreffed; $b^{\prime \prime \prime}=\frac{b^{\prime \prime \prime}+n^{\prime}}{2}$; in which, fubftituting for $b^{\prime \prime}$ its equal in our Example $\frac{1+a^{\prime}}{2}$, we fhall have $b^{\prime \prime \prime}=$ $\frac{1+3 \times a^{\prime}}{4}$. The fame way, $b^{\prime \prime}=\frac{b^{\prime \prime \prime}+a^{\prime}}{2}=\frac{1+-a^{\prime}}{8}$; and $b^{\prime}=$ $\frac{1+15 a^{\prime}}{16}$. In general; when the number of Games that B wants of gaining the Poule is m, then fhall $\frac{1+2^{m 2}-1 \times a^{\prime}}{2^{m}}$ be the value of his Expectations.
4. The other Expectations are collected nearly in the fame manner. As $c^{\prime \prime \prime}=\frac{n^{\prime \prime \prime \prime}+b^{\prime}}{2}$, in which fubftituting for $a^{\prime \prime \prime \prime}$ its equal (in our example) $\frac{0+f^{\prime}}{2}$, we have $c^{\prime \prime \prime}=\frac{f^{\prime}+2 b^{\prime}}{4}=\frac{1}{2} b^{\prime}+\frac{1}{4} f^{\prime}$. The fame way, $c^{\prime \prime}=\frac{1}{2} b^{\prime}+\frac{1}{4} f^{\prime}+\frac{1}{8} e^{\prime}$: and $c^{\prime}=\frac{1}{2} b^{\prime}+\frac{1}{4} f^{\prime}+$ $\frac{1}{8} e^{l}+\frac{1}{16} d^{l}$; the number of Terms added to the Games won being always $=n$, and the Letter a^{\prime} always omitted.

From all which it appears, that the Expectation of a Gamefter, in any State of the Play, is exprefled by the Expectations $a^{\prime}, b^{\prime}, c^{\prime}$, $\& c$. after one Game is won : and that thefe, therefore, are firft to be computed.
5. In order to which, I fay, that the Letters $b, c, d, e, \& c$. expreffing, as above, the Chances of the Gamefters, $B, C, D, E, \& c$. immediately after their Order of playing is fixt by lot, or otherwife; thefe Chances are in the geometrical Progreffion of $1+2^{n}$ to 2^{n}.

For either of the Gamefters (as A) who play the firt Game, has I out of 2^{n} Chances of beating all his Adverfaries in one Round. And therefore he may, in confideration of the Sum $\frac{1}{2^{n}} \times \overline{b+c+d+e}$ give up his expectations arifing from the Probability of that Event, and take the loweft place with the Expectation e; the Gamefter C fucceeding to his place, D to that of C; and fo on. But B having, on the foore of Priority, the fame demand upon A, as A has upon B; that is, neither having any demand upon the other, the Term $\frac{1}{2^{n}} \times b$ is to be cancelled; and the Value of A 's place, with refpect to the other Gamefters, reduced to $\frac{1}{i^{n}} \times c+\frac{1}{2^{n}} \times d+$ \&cc. And now each of the Gamefters $C, D, E, \& c$. being raifed to the next higher Expectation b, c, d, \&cc. for which he has paid $\frac{1}{2^{n}}$ of his former Expectation; it follows that $b=1+\frac{1}{2^{n}} \times c$, $c=\overline{1+\frac{1}{z^{n}} \times d}$, \&c. and that, before the play is begun, every Expectation is to the next below it as $\mathrm{I}+\frac{1}{2^{n}}$ to I , or as $\mathrm{I}+2^{n}$ to 2^{n}. Which coincides with Theor. I. of Mr. Nicolas Bernoulli in Phil. Tranf. N. 34 I.

Thus if the Gamefters are $3,(A) B, C$; their firft Expectations are (5) 5,4 , with the common Denominator 14. If they are 4 , (A) B, C, D, their Expectations are (8_{1}) $8 \mathbf{1}, 7^{2}, 64$, with the Denominator 298. If there are 5 Gamefters, their Expectations are (17^{3}) $17^{3}, 17^{2} \times 16,17 \times 16^{2}, 163$, with their Sum for a Denominator; that is, (4913), 4913, 4624, 4352, 4096, with the Denominator 22898. And the like for any number of Gamefters.
6. It is plain likewife that the Expectations of all the Gamefters, excepting A and B, remain the fame after one Game is plaid, as they were at firt ; $c^{\prime}=c, d^{l}=\frac{d,}{\mathrm{X}}, e^{\prime}=e$, \&c. becaufe the contefi
in the firft Game concerns A and B alone; its Event making no alteration in the Expectations of the others: but only raifing B 's firft expectation, which was b, to the Value b^{\prime}, and diminifhing the equal Expectation of A by the fame quantity: fo that $a^{\prime}+$ $b^{\prime}=2 b$.

And therefore, to find all the Expectations after the firt Game is played, we have now only to compute the firft and laif of that Rank, b^{\prime} and a^{\prime}.
But it was found already that if m reprefents the number of Games that the laft Winner B wants to gain the Poule, his Expectations in that Circumftance will be equal to $\frac{1+2^{m}-1 \times a^{\prime}}{2^{m}}$. From which, putting $m=n-1$, which is the Cafe when B has got one Game, and the Expectation b^{\prime}; and fubftituting for b^{\prime} its equal $2 b-a^{\prime}$, we fhall get $a^{l}=\frac{2^{n} b-1}{2^{n}-1}$.

As when there are 3 Gamefters, $n=2, b=\frac{5}{14}$ and $a^{l}=$ $\frac{\frac{20}{14}-1}{3}=\frac{6}{4^{2}}=\frac{1}{7}$. And $b^{l}=2 b-a^{l}=\frac{10}{14}-\frac{2}{14}=\frac{4}{7}$.
If there are 4 Gamefters, $n=3, b=\frac{8_{1}}{29^{8}} ;$ and therefore $a^{\prime}=$ $8 \times \frac{81}{298}-1 \times \frac{1}{7}=\frac{350}{298} \times \frac{1}{7}=\frac{50}{1298}=\frac{25}{149}$. And $b^{r}=\frac{81}{149}$ $-\frac{25}{149}=\frac{56}{149}$.
If there are 5 Gamefters, $n=4, b=\frac{-4913}{22898}$; whence $a^{\prime}=$ $16 \times \frac{4913}{22898}-1 \times \frac{1}{15}=\frac{55710}{22898} \times \frac{1}{15}=\frac{3714}{22898}=\frac{1857}{11449}$. And $b^{\prime}=2 b-a^{\prime}=\frac{4913}{11249}-\frac{1887}{1.449}=\frac{3066}{1,149}$. So that the Expectations of the Gamefters, B having got one Game, will ftand thus:

$$
\begin{array}{ccccc}
B & C & D & E & A \\
b^{\prime} & c^{\prime} & d^{l} & e^{l} & a^{\prime}
\end{array}
$$

$3056,2312,2176,2048,1857$; thefe numbers expreffing the Ratios of the Expectations; and with the Denominator 11449 fubfribed, their abfolute quantity; or the Shares of the whole Stake due to each Gamefter, if they were to give over playing.
7. And thus the Probabilities which the feveral Gamefters have of gaining the Poule may in all Cafes be computed, and difpofed into Tables. But the 6 following, will, 'tis thought, be more than fufficient for any Cafe that happens in play.

Table

The Doctrine of Chances.
Tabee I. For a Poule of Three:

Tab. III. For a Poule of Five.

Tab. IV. For a Poule of Six.

156 The Doctrine of Chances.
One Example will thew the Ufe of the Tables: Suppofe 5 Gamefters engaged in a Poule, with this condition, that if it is not ended when a certain number of Games are played, they fhall give over, and divide the Money in proportion to the Chances they fhall then have of winning the Poule. That number of Games being played, fuppofe the Poule rifen to 30 Guineas, and that a Gamefter (B) has got two Games: 2μ. how the 30 Guineas are to be fhared ?

Divide $31 \frac{1}{2} l$. into Shares proportional to the numbers 4255 , 2040, \&c. (in Tab. III.) which ftand in the Raw of Games won II. and thofe Shares will be as follow: $3 \pm \frac{1}{2} l . \times \frac{4255}{11449}=$ the Share of

Note, the pricked Line which is drawn in each of the Tables feparates the Chances of the Gamefters who are neceffarily to come into the play before the Poule is won, from the Chances of thofe who may poffibly not come in again; which lie below that line. And, fetting afide the Column B, all the Chances in any Row above the line are in the continued Ratio of $1+2^{n}$ to 2^{n}. As in Tab. III. $d^{\prime \prime}=\frac{16}{17} \times c^{\prime \prime}$, or $1920=\overline{1-\frac{1}{17}} \times 2040$.

The fame is true of the Terms of any Row that lie both below the line. But if one lies above and the other below it, their Relation is different, and is to be found by Art. 3. of this Remark.

It remains to compute the Profit and Lofs upon the Fines $p:$ as follows.

1. The prefent Expectations of a Gamefter who is entering, or to enter, into play, that he fhall be the Winner, are made up of his feveral prefent Expectations, upon the Events of his coming in once, trice, thrice, \&c. as is manifeft. And as, immediately after the Order of playing is fixt, it was fhewn that thofe total Expectations are in the geometrical Progreffion of $1+2^{n}$ to 2^{n}, the number of Gamefters being $n+1 ; \mathrm{fO}_{2}$ in any other State of the Poule, their Ratio is always given.

But every time that a Gamefter enters, his Chance of winning in that Turn, is to his Chance of paying a Fine, as 1 to $2^{n}-1$: and therefore, componendo, the Sum of a Gamefter's feveral Expectations of winning, is to the Sum of his feveral Rifks of paying a Fine, in the fame Ratio; the whole Stake, and alfo each Fine p, being put =1. And the whole Rifks of the feveral Gamefters are in the fame Ratios as their Expectations.

Thus in the Cafe of Three Gamefters, whofe Expectations are $\frac{5}{14}, \frac{5}{14}, \frac{4}{1+}$, their Chances of paying the Fine p will be the fame Fractions multiplied into $3\left(=2^{n}-1\right)$; that is, they will be $\frac{15}{14}$, $\frac{15}{14}, \frac{12}{14}$.

And the firt Expectations of Four Gamefters being 81, 8 I, 72, 64, to the Denominator 298 ; their Chances of being Fined will be the fame Numerators multiplied into $7\left(=2^{n}-1\right)$, that is, $\frac{567}{29^{8}}, \frac{567}{298}, \frac{504}{298}, \frac{448}{298}$; refpectively.

Hence again it appears, that the Total of the Fines, or the Sum for which they may be furnihhed throughout the Poule, is $\overline{2^{n}-1}$ $\times p$. For the Sum of the Expectations upon the Stake I, is I; and there are to the Number of Fines as 1 to 2^{n}-- 1 .
2. Suppofe now that one of the firft Players of Three, as A, is: beat out, and his Fine paid, as muft always neceffarily happen; and thence, the Expectations of getting the Poule reduced to $C B A$ $\frac{4}{7} \frac{2}{7} \frac{1}{7}$: then the Rifks of C and A will be $\frac{6}{7}, \frac{3}{7}$, refpectively : whofe Sum $\frac{9}{7}$ taken from $2\left(=2^{n}-2\right)$ leaves $\frac{5}{7}$ for the Fines of B.

In like manner, the Expectations of Four Gamefters, after one Game is won, being $56,36,32,25$, with the Denominator 149 ; the Numerators of the Rifks of the Three laft Gamefters C, D, A, will be $36,32,25$, multiplied by $7\left(=2^{n}-1\right)$ to the fame Denominator; and their Sum taken from the Fines to be paid after one Game is won, which are $6=2^{n}-2$, leaves for the Rifks of $B, \frac{243}{1.49}$: thofe of C, D, A, being $\frac{252}{149}, \frac{224}{149}, \frac{175}{149}$, refpectively.
3. If B has got more than one Game, the Sums for which a Spectator R may furnifh all the fubfequent Fines, will be found as follows.

Let the Number of Fines which R rifks to pay, when B has got $1,2,3,4, \& c c$. Games, be $x, y, z, v, \& c c$. refpectively; then $\frac{x+1+5+1}{2}=x$; or $y=x-2, \frac{\frac{x+i+1+x+1}{2}}{2}=y=x-2$; or $z=$ $x-\overline{2^{2}+2}$. And the fame way $v=x-\overline{2^{3}-2^{2}}+\overline{2}, 8 \mathrm{c}$. ; in an obvious Progreffion.
Becaufe when B has got 1 Game, there is an equal Chance of his winning or lofing the next: ; in the former Cafe, R pays the Fine I $\times p$ for C, and comes to have the Rifk y; but if C wins, R pays $1 \times p$ for B, and his Rifk x is the fame as before : and fo of the reft. So that the number of pieces p for which R may engage to furnifh the fubfequent Fines, when B has got 2, 3, 4, \&c. Games, is had by the continual Subtraction of 2 and its Powers from $2^{n}-2$. As in a Poule of four, when B has got 2 Games, the Sum of the Rifks is $6-2=4$. In a Poule of five, $x=2^{n}-2=14, y=12$, $z=8, v=0$.

And from there numbers fubtracting the Rifks of the other Gamefters C, D, E, \&c. found as above, there will remain the Rifks of B the Gamefter who continues in play.
4. The Expectations of the feveral Gamefters upon the Fines may likewife be determined by an obvious, but more troublefome, Operation.
Under the Capitals, $B C D E A$, write their fmall Letters thus:

	$b^{n} c^{1 l} d^{1 l} c^{n}$

IV. $b^{*} \circ 0$: 0 - Signifying, refpectively, the Number of Fines which a Gamefter, winning the Poule, may expect to find in it, B having already got fo many Games as the Dots affixed to the Letter : and to thefe Letters prefix their fractional Coefficients taken from the Tables of Probabilities. . Then, by the law of the Game, there will be formed a Series of Equations determining the Expectations fought.

> As in the Cafe of 3 Gamefters, write,
> $B \quad C \quad A$
> $\left.\begin{array}{lcc}\text { I. } \frac{4}{5} b^{l} & \frac{2}{7} c^{\prime} & \frac{1}{7} a^{\prime} \\ \text { IIII } \times b^{\prime} \equiv 2 & 0 & 0\end{array}\right\}$ and the Equations $\left\{\begin{array}{l}1^{\circ} \cdot \frac{4}{7} b^{\prime}=\frac{1}{2} \times \overline{2+\frac{1}{7} \times a^{i}+1} \\ 2^{\circ} \cdot \frac{2}{7} c^{\prime}=\frac{1}{2} \times \frac{4}{7} \times \overline{b^{\prime}+1}+0 \\ 3^{\circ} \cdot \frac{1}{7} a^{\prime}=\frac{1}{2} \times \frac{2}{7} \times \overline{c^{\prime}+1}+0\end{array}\right.$

The Doctrine of Chances.

Which being reduced give $B^{\grave{ }}\left(=\frac{4}{7} b^{\prime}\right)=\frac{68}{49}, C^{l}\left(=\frac{2}{7} c^{\prime}\right)=$ $\frac{4^{8}}{49}, A^{\prime}\left(=\frac{1}{7} a^{\prime}\right)=\frac{31}{49}$. From which fubtracting their refpective Rifks; for $B, \frac{35}{49}$; for $C, \frac{42}{49}$; and for $A, \frac{70}{49}\left(=\frac{3}{7}+1\right.$, his Fines, and the Fine already paid in), remain the Gains $+\frac{33}{49},+\frac{6}{49},-$ $\frac{39}{49}$, multiplied into p.

If it is a Poule of four, the Expectations on the Fines will fland thus:

$$
\begin{array}{lcc}
& B & C \\
\text { I. } & \begin{array}{c}
56 \\
149 \\
l
\end{array} & \frac{36}{149} c^{\prime} \\
\frac{32}{149} d^{\prime \prime} & \frac{A 5}{149} a^{l} \\
\text { II. } \frac{87}{149} b^{\prime \prime} & \frac{28}{149} c^{\prime \prime} & \frac{18}{149} d^{\prime \prime} \\
\frac{16}{149} a^{\prime \prime}
\end{array}
$$

III. I $\times b^{m \prime}=30$. 0 and fetting afide the common Denominator 149, the Equations will be;
$1^{\circ} \cdot 56 b^{l}=\frac{i}{2} \times \overline{25 \cdot \overline{a^{\prime}+1}+87 b^{\prime \prime}} \quad 5^{\circ} \cdot 28 c^{\prime \prime}=\frac{1}{2} \times 5^{6} \overline{b^{l}+2}+$ o i.e. $c^{\prime \prime}=b^{l}+2$ $2^{\circ} .36 c^{\prime}=\frac{i}{2} \times \overline{5^{6 . \overline{b^{\prime}+1}+16 a^{\prime \prime}}} \quad 6^{\circ}$. $\quad " d=c^{\prime}+2$
$3^{\circ} \cdot 32 d^{l}=\frac{1}{2} \times 36 \cdot \overline{c^{c+1}+28 c^{l l}} \quad 7^{\circ} . \quad a^{\prime \prime}=d^{\prime \prime}+2$
$4^{\circ} .25 a^{\prime}=\frac{1}{2} \times 32 . \overline{d^{\prime}+1+18^{\prime \prime} d} \quad 8^{\circ} . \frac{87}{149} b^{\prime \prime}=\frac{1}{2} \times \overline{3+\frac{25}{149} \overline{a^{l}+1}}$
Whence will be found
$\left.\begin{array}{ll}b^{\prime}=\frac{813 \frac{1}{7}}{149} ; \text { and }\left(\frac{56}{149} b^{\prime}=\right) B^{\prime}=\frac{45536}{22201} \\ c^{\prime}=\frac{1075 \frac{2}{3}}{149} \text {; and } & C^{\prime}=\frac{38724}{22201} \\ d^{\prime}=\frac{1175}{149} ; \text { and } & D^{\prime}=\frac{37500}{22201} \\ a^{\prime}=\frac{1341-\frac{22}{25}}{149} ; \text { and } & A^{\prime}=\frac{33: 47}{22201}\end{array}\right\}\left\{\begin{array}{l}b^{\prime \prime}=\frac{618 \frac{34}{17}}{149} ; \text { and } B^{\prime \prime}=\frac{53800}{22201} \\ c^{\prime \prime}=\frac{111 \frac{1}{7}}{149} ; \text { and } C^{\prime \prime}=\frac{31112}{22201} \\ { }^{\prime \prime} d=\frac{1373 \frac{2}{3}}{1_{49}} ; \text { and } D^{\prime \prime}=\frac{24726}{22201} \\ a^{\prime \prime}=\frac{1473}{149} ; \text { and } A^{\prime \prime}=\frac{23,68}{2.201} .\end{array}\right.$
And the like Computations may be made for the fuperior Poules; the Compofition of the Equations to be-reduced being regular and obvious.

PROBLEM XLVI.

Of Hazard.

To find at Hazard the Advantage of the Setter upon all Suppofitions of Main and Cbance.

Solution.

Let the whole Money played for be confidered as a common Stake, upon which both the Cafter and the Setter have their feveral Expectations ; then let thofe Expectations be determined in the following manner.
Firft, Let it be fuppofed that the Main is vir : then if the Chance of the Cafter be vi or viri, it is plain that the Setter having 6 Chances to win, and 5 to lofe, his Expectation will be $\frac{6}{11}$ of the Stake: but there being io Chances out of 36 for the Chance to be vi, or viin, it follows, that the Expectation of the Setter refulting from the Probability of the Chance being vi or viri, will be $\frac{10}{30}$ multiplied by $\frac{6}{11}$ or $\frac{60}{11}$ divided by 36 .

Secondly, If the Main being vir, the Chance fhould happen to be v or Ix, the Expectation of the Setter would be $\frac{21}{5}$ divided by 3^{6}.

Thirdly, If the Main being vir, the Chance fhould happen to be iv or x , it follows that the Expectation of the Setter would be 4 divided by 3^{6}.

Fourtbly, If the Main being vir, the Cafter fhould happen to throw II, III, or xir, then the Setter would neceffarily win, by the Law of the Game; but there being 4 Chances in 36 for throwing II; III, or XII, it follows that before the Chance of the Cafter is thrown, the Expectation of the Setter refulting from the Probability of the Cafter's Chance being 11, 111, or XII, will be 4 divided by 3^{6}.

Lafly, If the Main being vir, the Cafter fhould happen to throw vir, or Xi, the Setter lofes his Expectation.

From the Solution of the foregoing particular Cafes it follows, that the Main being VII, the Expectation of the Setter will be exprefled preffed by the following Quantities, viz. $\frac{\frac{60}{11}+\frac{24}{5}+\frac{4}{1}+\frac{4}{1}}{30}$ which may be reduced to $\frac{251}{495}$; now this fraction being fubtracted from Unity, to which the whole Stake is fuppofed equal, there will remain the Expectation of the Cafter, viz. $\frac{244}{495}$.

But the Probabilities of winning being always proportional to the Expectations, on Suppofition of the Stake being fixt, it follows that the Probabilities of winning for the Setter and Cafter are refpectively proportional to the two numbers 25 I and 244 , which properly de; note the Odds of winning.

Now if we fuppofe each Stake to be I, or the whole Stake to be 2, the Gain of the Setter will be expreffed by the fraction $\frac{7}{495}$, it being the difference of the numbers expreffing the Odds, divided by their Sum, which fuppofing each Stake to be a Guinea of 21 Shillings will be about $3^{d}-2 \frac{1}{4} f$.

By the fame Method of Procefs, it will be found that the Main being vi or ViII, the Gain of the Setter will be $\frac{167}{7128}$ which is about $5^{d .}-3 \frac{1}{2} f$ in a Guinea.

It will be alfo found that the Main being v or 1 x , the Gain of the Setter will be $\frac{43}{2835}$, which is about $3^{d}-3 \frac{1}{3} f$ in a Guinea.

Corollary 1 .

If each particular Gain made by the Setter, in the Cafe of any Main, be refpectively multiplied by the number of Chances which there are for that Main to come up, and the Sum of the Products be divided by the number of all thofe Chances, the Quotient will exprefs the Gain of the Setter before a Main is thrown : from whence it follows that the Gain of the Setter, if he be refolved to fet upon the firft Main that may happen to be thrown, is to be eftimated by $\frac{4^{2}}{495}+\frac{1670}{7^{128}}+\frac{344}{23_{35}}$, the whole to be divided by 24 , which being reduced will be $\frac{37}{2010}$, or about $4^{d}-2 \frac{1}{2} f$ in a Guinea.

Corollary 2.

The Probability of no Main, is to the Probability of a Main as $109+2$ to $109-2$, or as II I to 107 .

Corollary 3 .

If it be agreed between the Cafter and Setter, that the Main Chall always be vir, and it be farther. agreed, that the next Chance happening to be Ames-ace, the Cafter fhall lofe but half his Stake, then the Cafter's Lofs is only $\frac{1}{3960}$ of his Stake, that is about $\frac{1}{4} f$ in a Guinea.

$$
\text { Corollary } 4 \text {. }
$$

The Main being vi or VIII, and the Cafter has $\frac{3}{4}$ of his money returned in cafe he throws Ames-ace, what is his Lofs? And if the Main being v or Ix, and he has $\frac{1}{2}$ of his Money returned in care he throws Ames-ace, what is his Lofs? In anfwer to the firft, the Gain of the Setter or Lofs of the Cafter is $\frac{1}{385 \frac{11}{37}}$. In anfwer to the fecond the Lofs of the Cafter would be but $\frac{1}{782 \frac{2}{29}}$.

Corollary 5.

If it be made a ftanding Rule, that whatever the Main may happen to be, if the Cafter throws Ames-ace immediately after the Main, or in other words, if the Chance be Ames-ace, the Cafter fhall only lofe $\frac{1}{3}$ of his own Stake, then the Play will be brought fo near an Equality, that it will hardly be diftinguifhable from it; the Gain of the Cafter being upon the whole but $\frac{1}{6048}$ of his own Stake, or $\frac{1}{6}$ of a farthing in a Guinea.

The Demonftration of this is eafily deduced from what we have faid before viz. that the Lofs of the Cafter is $\frac{37}{2016}$; now let us confider what part of his own Stake fhould be returned him in cafe he throws Ames-ace next after the Main; Let z be that part, but the Probability of throwing Ames-ace next after the Main is $\frac{1}{3_{6}}$, therefore, the real Value of what is returned him is $\frac{1}{36} z$, and fince the Play is fuppofed to be reduced to an Equality, then what is returned him muft equal his Lofs; for which reafon, we have the Equation $\frac{z}{36}=\frac{37}{2016}$, or $z=\frac{37}{56}$ which being very
near $\frac{2}{3}$, it follows that $\frac{2}{3}$ of his own Stake ought to be returned him.

Or thus; if the Cafter has returned him $\frac{37}{50}$ when that happens, he lofes nothing; but there being but I Chance in 36 for that Cafe to happen ; the real Value of what is returned is but $\frac{37}{56 \times 3^{6}}$; and in the fame manner if $\frac{2}{3}$ is returned, the real Value is $\frac{2}{3 \times 36}$: and fo , the Difference $\frac{2}{3 \times 3^{6}}-\frac{37}{50 \times 30}=\frac{1}{604^{8}}$ is the Gain of the Cafter.

PR O B L E M XLVII.

To find at Hazard the Gain of the Box for any number of Games divifible by 3.

Solution.

Let a and b refpectively reprefent the Chances for winning a Main or for lofing it, which is ufually called a Main and no Main; then,
$\mathbf{1}^{\circ}$, It is very vifible that when the four laft Mains are baaa, otherwife that when a Main has been loft, if the three following Mains are won fucceffively, then the Box muft be paid.
2°, That the laft 7 Mains being baaaaaa, there is alfo a Box to be paid.
3°, That the lait 10 Mains being baaaaaaaaa, the Box is to be paid, and fo on.

Now the Probability of the 4 laft Mains being baaa is $\frac{b a^{3}}{a+b)^{4}}$, and confequently, if the number of Mains thrown from the beginning is reprefented by n, the Gain of the Box upon this account will be $\frac{\overline{n-3} \times 6 a^{3}}{\overline{a+b}{ }^{4}}$.
But to obviate a difficulty which may perhaps arife concerning the foregoing Expreffion which one would naturally think muft be $\frac{n b a^{3}}{a+b+4}$, it muft be remembered that the Termination baaa belongs to 4 Games at leaft, and that therefore the three firft Games are to be excluded from this Cafe, tho' they fhall be taken notice of afterwards.

164 The Doctrine of Chances.
Again the Probability of the 7 latt Mains terminating thus baaaaaa, will be $\frac{b_{a^{6}}}{\overline{a+b})^{7}}$, but this Cafe does not belong to the 6 firf Mains,
 and fo on.

And therefore the firf part of the Expectation of the Box is expreffed by the Series

$$
\frac{\overline{n-3} \times b_{3}{ }^{3}}{\overline{a+b+}+}+\frac{\overline{n-6} \times b_{a}{ }^{0}}{\overline{a+b \gamma}}+\frac{\overline{n-9} \times b a 9}{\overline{a+b}+10}+\frac{\overline{n-12} \times b^{12}}{a+b}, \& c .
$$

of which the number of Terms is $\frac{n-3}{3}$.
The fecond part of the Expectation of the Box arifes from all the Mains being won fucceffively without any interruption of a no Main, and this belongs particularly to the three firf Mains, as well as to all thofe which are divifible by 3 , and therefore the fecond part of the Expectation of the Box will be expreffed by the Series $\frac{a^{3}}{a+a^{3}}+\frac{a^{6}}{a+b^{6}}+\frac{a^{9}}{a+a_{9}}+\frac{a^{12}}{a+b^{12}}$, $8<$ c. of which the number of Terms is $\frac{n}{3}$.

Thofe who will think it worth their while to fum up thefe Series, may without much difficulty do it, if they pleafe to confult my Mifcellanea, wherein fuch forts of Series, and others more compound, are largely treated of.

In the mean time, I fhall here give the Refult of what they may fee there demonftrated.

If the firf Series be diftinguifhed into two others, the firft pofitive, the other negative, we fhall now have three Series, the Sums of which will be, fuppofing $\frac{a}{a+b}=r$.

$$
\begin{aligned}
& 1^{0}, \frac{n b}{a+b} \times \frac{\overline{r^{3}-n^{3}}}{1-\frac{r^{3}}{r^{3}} \frac{1}{n r^{n}}+\frac{1}{3} \times \overline{n-1} \times r^{n+3}} \\
& 2^{0},-\frac{3^{6}}{a+b} \times-\frac{\left.r^{3}\right)^{2}}{3} \\
& 3^{0}, \frac{r^{3}-r^{n+3}}{1-r^{3}}
\end{aligned}
$$

the fum of all which will be reduced to the Expreffion $\frac{n}{14}-\frac{5}{49}$ $+\frac{5}{49 \times 2^{n}}$, when a and b are in a Ratio of Equality.

> Corollary i.

If n be an infinite number, the Gain of the Box will be univerfally expreffed by $\frac{n b}{a+b} \times \frac{a^{3}}{a+b)^{3}-a^{3}}$; but when a and b are in a Ratio of Equality by $\frac{n}{14}$.

Coro-

COROLIARY 2.

The Gain of the Box being fuch as has been determined for an infinite number of Mains, it follows that, one with another, the Gain of the Box for one fingle Main ought to be eftimated by $\frac{b}{a+b} \times \frac{a^{3}}{a+b^{3}-a^{3}}$, or $\frac{1}{14}$ if a and b are equal.

Corollary 3.

And confequently, it follows that in fo many Mains as are expreffed by $\frac{\overline{a+b \times a+i)^{3}-a^{3}}}{a^{3} b}$, or in 14 Mains if a and b are equal, the Expectation of the Box is I , calling I whatever is fipulated to belong to the Box, which ufually is i Half-Guinea.

Coroleary 4.

Now fuppofing that a and b are refpectively as 107 to 111 , a Box is payed one with another in about 14.7 Mains.

After I had folved the foregoing Problem, which is about 12 years ago, 1 fpoke of my Solution to Mr. Henry Stuart Stevens, but without communicating to him the manner of it: As he is a Gentleman who, befides other uncommon Qualifications, has a particular Sagacity in reducing intricate Queftions to fimple ones, he brought me, a few days after, his Inveftigation of the Conclufion fet down in my third Corollary; and as I have had occafion to cite him before, in another Work, fo I here renew with pleafure the Expreffion of the Efteem which I have for his extraordinary Talents: Now his Inveftigation was as follows.

Let a and b refpectively reprefent the number of Chances for a Main and no Main; Let alfo I be the Sum which the Box muft receive upon Suppofition of three Mains being won fucceffively; now the Probability of winning a Main is $\frac{a}{a+b}$, and the Probability of winning three Mains is $\frac{a^{3}}{a+b^{3}}$, and therefore the Box-keeper might without advantage or difadvantage to himfelf receive from the Cafter at a certainty, the Sum $\frac{a^{3}}{a+b^{3}} \times 1$, which would be an Equivalent for the uncertain fum I, payable after three Mains.

Let it therefore be agreed between them, that the Cafter flall pay but the Sum $\frac{a^{3}}{a+\lambda^{3}} X I$ for his three Mains; now let us fee what confideration the Box-keeper gives to the Cafter in return of that Sum. 1°, he allows him one Main fure, 2°, he allows him a fecond Main conditionally, which is provided he wins the firft, of which the Probability being $\frac{a}{a+b}$, it follows that the Box allows him only, if one may fay fo, the portion $\frac{a}{a+b}$ of a fecond Main, and for the fame reafon the portion $\frac{a a}{a+b b^{2}}$ of a third Main, and therefore the Box allows in all to the Cafter $\mathrm{I}+\frac{a}{a+b}+\frac{a a}{a+b^{2}}$. Mains, or ${ }^{3 a a+3 a b+b b} a$; and therefore if for the Sum received $\frac{-a^{3}}{a-b)^{3}} \times \mathrm{I}$, there be the allowance of $\frac{3 a c+a b+b b}{a+b)^{2}}$ Mains, how many are allowed for the Sum I? and the Term required will be $\frac{\overline{3 a a+3 a b+b} b \times \overline{a+b}}{a^{3}}$, or $\frac{\overline{c+b}}{a b^{3}}-\frac{a+b}{b}$: and therefore in fo many Mains as are denoted by the foregoing Expreffion, the Box gets the Sum 1; which Expreffion is reduced to 14 if a and b are equal.

PROBLEM XLVIII.

Of Raffling.
If any number of Gamefters A, B, C, D, $\circledast^{2} c$. play at Raffles, what is the Probability that the firft of them baving thrown bis Cbance, and before the other Cbances are thrown, wins the Money of the Play?

Solution.

In order to folve this Problem, it is neceflary to have a Table ready compofed of all the Chances which there are in three Raffles, which Table is the following.

A Table of all the Cbances which are in three Raffles.

Points.			Chances to win or lofe	$\begin{aligned} & \text { ances } \begin{array}{l} \text { and } \\ \text { nor orlofe. } \end{array} \end{aligned}$	nu.lity of
LIV		IX	884735	-	
LIII		X			
LII		XI	88468 r	10	45
LI		XII	884534	55	
L		XIII	884165	202	69
XLIX		XIV	883400	71	$\frac{9}{76}$
XLVIII		XV	881954	1336	1446
XLVII		XVI	879470	2782	2484
XLVI		XVII	S7550 I	5266	3969
XLV		XVIII	869632	9235	5869
XLIV		XIX	861199	15104	8433
XLIII	or	XX	849706	23537	11493
XLII		XXI	834679	35030	15027
XLI		XXII	815392	50057	19287
XL		XXIII	791506	69344	23886
XXXIX		XxIV	76283^{8}	93230	28668
XxXViII		XXV	728971	121898	33^{867}
XxXVII		XxVI	690100	155765	38871
XxxVI		XXVII	646929	194636	4317 I
XxxV		XXVIII	599472	237807	47457
XXXIV		XXIX	54.8865	285264	50607
XXXIII		XXX	496314	$335^{87} 1$	52551
XXXII		XXXI	442368	388422	53946

The Sum of all the numbers expreffing the Equality of Chance: being 442368 , if that Sum be doubled it will make 884736 , which is equal to the Cube of 96 .

The firt Column contains any number of Points which A may be fuppofed to have thrown in three Raffles.

The fecond Column contains the number of Chances which A has for winning, if his Points be above xxx I, or the number of Chances he has for lofing, if his Points be either xxxi or below it.

The third Column contains the number of Chances which A has for lofing, if his Points be above xxxi, or for winning, if they be either xxxi or below it.

The fourth Column, which is the principal, and out of which the other two are formed, contains the number of Chances whereby any number of Points from ix to Liv can be produced in three Raffles; and confequently contains the number of Chances which any of the Gamefters $B, C, D, \& c$. may have for coming to an equality of Chance with A.
The Conftruction of the fourth Column depends chiefly on the number of Chances which there are for producing one fingle Raffle, whereof xviil or in have I Chance

	or v		
	or vi	have	s
	or vil		Chances
	or vili		Chances
	or ix	hav	Ch

Which number of Chances being duly combined, will afford all the Chances of three Raffles.

But it will be convenient to illuftrate this by one Inflance; let it therefore be required to find the number of Chances for producing $\mathrm{X}_{1} \mathrm{I}$ Points in three Raffles.
1°, It may plainly be perceived that thofe Points may be produced by the following fingle Raffles 1 II , III, Vi, or 11 I , IV, v , or Iv, IV, IV ; then confidering the firft Cafe, and knowing from the Table of fingle Raffles, that the Raffles III, ini, vi, have refpectively I, I, 4 Chances to come up, it follows from the Doctrine of Combinations that thofe three numbers ought to be multiplied together, which in the prefent Cafe makes the product to be barely 4 , but as the difpofition, 111,111, vi, may be varied twice; viz. by III, VI, III, and VI, III, III, which will make in all three difpofitions, it follows that the number 4 , which expreffies the Chances of one difpofition, ought to be multiplied by 3 , which being done, the product 12 muft be fet apart.
2°, The Difpofition III, Iv, v, has for its Chances the product of the numbers $1,-3,6$, which makes 18 ; but this being capable of 6 permutations, the number 18 ought to be multiplied by 6 , which being done, the product 108 muft likewife be fet apart.
3°, The Difpofition Iv, Iv, iv has for its Chances the product of 3, 3 , 3 , which makes 27 ; but this not being capable of any variation, we barely write 27 , which muft be fet apart.
4°, Adding together thofe numbers that were feverally fet apart, the Sum will be found to be 147 , which therefore expreffes the number of Chances for producing xir Points in three Raffles: and in the fame manner may all the other numbers belonging to the Table of three Rafles be calculated.

This being laid down, let us fuppofe that A has thrown the Points xu in three Raflles, that there are four Gamefters befides himfelf, and that under that circumftance of A, it be required to find the Probability of his beating the other four.

Let m univerfally reprefent the number of Chances which any other Gamefter has of coming to an equality with A, which number of Chances in this particular Cafe is 23886 ; Let a univerfally reprefent the number of Chances which A has for beating any one of his Adverfaries, which number of Chances is found in the Table to be $79{ }^{1} 506$; Let \int reprefent the number of all the Chances that there are in three different Raffles, which number is the Cube of 96 , by reafon that there are no more than 96 fingle Raffles in three Dice, and therefore \int conftantly ftands for the number 884736 ; Let p univerfally reprefent the number of Gamefters in all, which in this Cafe will be 5 ; then the Probability which A has of beating the other four will be $\frac{\overline{a+m} p^{p}-a^{p}}{m p \times x^{p-1}}$; and therefore if each of the Gamefters ftake I, the Expectation of A upon the whole Stake p,
 what he might clearly get from his Adverfaries by an equitable compofition with them for the Value of his Chance, will be $\frac{a+m^{p}-a^{p}}{m f^{p-1}}-\mathrm{I}$.

Now the Logarithm of $\overline{a+m}=5.9113665$, Log. $a=5.8984542$, Log. $m=4.37^{81434}$, Log. $f=5.9468 \mathrm{I}_{3} 6$; and therefore Log. $\overline{a t m}^{p}=$ or Log. $\left.a+m\right)^{5}=29.5568325$, Log. $a p=29.4922710$, Log. $m \rho-1=28.1653978$; from which Logarithms it will be convenient to reject the leaft index 28, and treat thofe Logarithms as if they were refpectively I. 5568325 , I $4922710,0.1653978$: but the numbers belonging to the two firft are 36.044 and 31.065 , whofe difference is 4.979 from the Logarithm of which, viz. 0.697142 I , if the Log. 0.1653978 be fubtracted, there will remain the Log. 0.5317433 , of which the correfponding number being 3.402 , it follows that the Gain of A ought to be eftimated by 2.402 .

Demonstration.

1°, When A has thrown his Chance, the Probability of B 's having a worfe Chance will be $\frac{a}{\zeta}$; wherefore the Probability which A has of beating all his Adverfaries whofe number is $p-\mathrm{I}$, will be $\frac{e^{p-1}}{s^{p-1}}$.
2°, The Probability which B has in particular of coming to an Equality with A is $\frac{m}{\int}$, which being fuppofed, the Probability which A has of beating the reft of his Adverfaries whofe number is $p-2$, is $\frac{a^{p-2}}{f^{p-2}}$; which being again fuppofed, the Probability which A now has of beating B, with whom he muft renew the Play, is $\frac{1}{2}$; wherefore the Probability of the happening of all thefe things is $=\frac{m}{f} \times \frac{a^{p-2}}{f^{p-2}} \times \frac{1}{2}=\frac{\frac{1}{2} m a^{p-2}}{f^{p-1}}$: but becaufe C, or D or $E, \& c$. might as well have come to an equality with A as B himfelf, it follows that the preceding Fraction ought to be multiplied by $p-1$, which will make it, that the Probability which A has of beating all his Adverfaries except one, who comes to an equality with him, and then of his beating him afterwards, will be $\frac{\frac{p-1}{2} m a^{p-2}}{j^{p-1}}$.
3°, The Probability which both B and C have of coming to an equality with A is $\frac{m m}{\mathrm{mf}^{m}}$; which being fuppofed, the Probability which A has of beating the reft of his Adverfaries whofe number is. $p-3$, is $\frac{a^{p-3}}{s^{p-3}}$; which being again fuppofed, the Probability which A now has of beating B^{\prime} and C with whom he muft renew the Play, (every one of them being now obliged to throw for a new Chance) is $\frac{1}{3}$; wherefore the Probability of the happening of all thefe things will be $=\frac{m m}{\int J} \times \frac{a^{p-3}}{f^{p-3}} \times \frac{1}{3}=$ $\frac{\frac{1}{3} m m a^{p-3}}{\rho^{p-1}}$:
but the number of the Adverfaries of A being $p-I$, and.

The Doctrine of Chances.

and the different Variations which that number can undergo by elections made two and two being $\frac{p-1}{1} \times \frac{p-2}{2}$, as appears from the Doctrine of Combinations, it follows that the Probability which any two, and no more, of the Adverfaries of A have of coming to an Equality with him, that A fhall beat all the reft, and that he fhall beat afterwards thofe two that were come to an Equality, is $\frac{\frac{p-1}{2} \times \frac{p-2}{3} m m a^{p-3}}{s^{p-1}}$ and fo of the reft.

From hence it follows that the Probability which A has of beating all his Adverfaries, will be exprefled by the following Series, $\frac{a^{p-1}+\frac{p-1}{2} m a^{p-2}+\frac{p-1}{2} \times \frac{p-2}{3} m m a^{p-3}+\frac{p-1}{2} \times \frac{p-2}{3} \times \frac{p-3}{4} m^{3} a^{p-4}, \& z .}{\text { c }}$ the Terms of whofe Numerator are continued till fuch time as. their number be $=p$; now to thofe who underfland how to raife a Binomial to a Power given, by means of a Series, it will plainly appear that the foregoing Expreffion is equivalent to this other $\frac{\overline{a+m} p^{p}-a^{p}}{m p \times f^{p-1}}$; which confequently denotes the Probability required.

PR O BLEM XLIX.

The fame tbings being given as in the preceding Problem, to find bow. many Gamefters there ought to be in all, to make the Cbance of A, after be bas throwen the Point xL , to be the moft advantageous that is polfible.

SOLUTION.

It is very eafily perceived that the more Adverfaries A has, the more his Probability of winning will decreafe ; but he has a Compenfation, which is, that if he beats them all, his Gain will be greater than if he had had fewer Competitors: for which reafon, there being a balance between the Gain that he may make on one fide, and the decreafe of the Probability of winning on the other, there is a certain number of Gamefters, which till it be attained, the Gain will be more prevalent than the decreafe of Probability; but which being exceeded, the decreafe of Probability wiil prevail over the Gain; fo that what was advantage, till a certain time, may gradually turn to equality, and even to difadvantage. This Problem is therefore propofed in order to determine thofe Circumftances.

Z 2
Let

Let Log. $\int-$ Log. a be made $=g$, let alfo Log. $\int-$ Log. $\overline{a+m}$ be made $=f$, which being done, then the number of Gamefters requifite to make the Advantage the greatelt poffible will be expreffed by the fraction $\frac{\log . g-\log . f}{\log a+m-\log \cdot a}$, fo that fuppofing as in the preceding Problem that $a=791506, m=23886$, and confequently $a+m=815392$, as alfo $S=884736$, and $\log . ~ \int=5.94 .68136$ Log. $a=5.8984542$, Log. $m=4.378$ I 434 Log. $a+m=5.91$ I $_{3} 665$, then g will be $=0.0483594$, and f will be $=0.35447$ I. Theref. Log. $g-$ Log. $f=0.1349014$, and Log. $\overline{a+m}-$ Log. $a=0.0129123$ and therefore the number of Gamefters will be $\frac{1349014}{129223}=10.4$ nearly, which fhews that the number required will be about ten or eleven.

As the Demonftration of this laft Operation depends upon principles that are a little too remote from the Doctrine of Chances, I have thought fit to omit it in this place; however if the Reader will be pleafed to confult my Mijcellanea Analytica, therein he will find it, pag. 223 and 224.

It is proper to obferve, that the method of Solution of this laft Problem, as well as of the preceding, may be applied to an infinite variety of other Problems, which may happen to be fo much eafier than thefe, as they may not require Tables of Chances ready calculated.

PROBLEML.

Of Whisk.

If four Gamefters play at Whik, to find the Odds that any two of the Partners, that are pitched upon, bave not the four Honours.

Solution.

Firf, Suppofe thofe two Partners to have the Deal, and the laft Card which is turned up to be an Honour.

From the Suppofition of thefe two Cafes, we are only to find what Probability the Dealers have of taking three fet Cards in twentyfive, out of a Stock containing fifty-one. To refolve this the fhorteft way, recourfe muft be had to the Theorem given in the Remark belonging to our $\mathrm{xx}^{\text {th }}$ Problem, in which making the Quantities. n,

The Doctrine of Chances.

173 c, d, p, a, refpectively equal to the numbers $51,25,26,3,3$, the Probability required will be found to be $\frac{25 \times 24 \times 23}{51 \times 50 \times 49}$ or $\frac{92}{833}$.

Secondly, If the Card which is turned up be not an Honour, then we are to find what Prohability the Dealers have of taking four given Cards in twenty-five out of a Stock containing fifty-one ; which by the aforefaid Theorem will be found to be $\frac{26 \times 24 \times 23 \times 22}{51 \times 50 \times 49 \times 48}$ or $\frac{253}{4998}$.

But the Probability of taking the four Honours being to be eftimated before the laft Card is turned up; and there being fixteen Chances in fifty-two, or four in thirteen for an Honour to turn up, and nine in thirteen againft it, it follows that the Probability of the firft Cafe ought to be multiplied by 4 ; that the fraction expreffing the Probability of the fecond ought to be multiplied by 9; and that the Sum of thofe Products ought to be divided by I3, which being done, the Quotient $\frac{115}{1566}$ or $\frac{2}{29}$ nearly, will exprefs the Probability required.

And by the fame Method of proceeding it will be found, that the Probability which the two Eldeft have of taking four Honours is $\frac{69}{1664}$, that the Probability which the Dealers have of taking three Honours is $\frac{468}{16: 0}$, and that the Probability which the Eldeft have of taking three Honours is $\frac{364}{1060}$. Moreover, that the Probability that there are no Honours on either fide will be $\frac{6_{50}}{1606}$.

Hence it may be concluded, 1°, that it is 27 to 2 nearly that the Dealers have not the four Honours.

That it is 23 to 1 nearly that the Eldef have not the four Honours.

That it is 8 to I nearly that neither one fide nor the other have the four Honours.

That is 13 to 7 nearly that the two Dealers do not reckon Honours.
That it is 20 to 7 nearly that the two Eldeft do not reckon Honours.

And that it is 25 to 16 nearly that either one fide or the other do reckon Honours, or that the Honours are not equally divided.

> Corollary i.

From what we have faid, it will not be difficult to folve this Cafe at Whifk; viz. which fide has the beft, of thole who have vili of the Game, or of thofe who at the fame time have x ?

In order to which it will be neceffary to premife the following Principle.
1°, That there is but I Chance in 8192 to get vir by Triks.
2°, That there are r_{3} Chances in $81 \mathrm{~g}_{2}$ to get vi .
3°, That there are 7^{8} Chances in 8192 to get v .
4°, That there are 286 Chances in 8192 to get iv.
5°, That there are 715 Chances in 8 Ig2 to get III.
6°, That there are 1287 Chances in 8192 to get 1 I.
7°, That there are 1716 Chances in 8192 to get I .
All this will appear evident to thofe who can raife the Binomial $a+b$ to its thirteenth power.

But it muft carefully be obferved that the foregoing Chances exprefs the Probability of getting to many Points by Triks, and neither more nor lefs.

For if it was required, for Inflance, to affign the Probability of getting one or more by Triks, it is plain that the Numerator of the Fraction expreffing that Probability would be the Sum of all the Chances which have been written, viz. 4096, and confequently that this Probability would be $\frac{1096}{8192}$ or $\frac{1}{2}$.
2°, That the Probability of getting two or more by Triks would be $\frac{2380}{8192}$, or $\frac{1190}{4.900}$.
3°, That the Probability of getting three or more by Triks would be $\frac{1093}{8192}$.
4°, That the Probability of getting iv or more by Triks would be $\frac{378}{8 i 9^{2}}$.
5°, That the Probability of getting v or more by Triks would be $\frac{92}{8192}$.
6°, That the Probability of getting vi or more would be $\frac{14}{8192}$.
7°, That the Probability of getting v1I would be $\frac{1}{8192}$.
This being laid down, I proceed thus.
I°, If thofe that have viri of the Game are Dealers, their Probability of getting in by Honours is $\frac{583}{1660}$: for the Dealers will get II by Honours if they have either 3 of the 4 . Honours, or all the 4 Honours, but the Probability of taking three Honours is $\frac{458}{1060}$, and the Probability they have of taking the four Honours is $\frac{175}{1666}$, and the Sum of this is $\frac{58 \%}{106 \hbar^{2}}$.

The

The Probability which they have of getting them by Triks is $\frac{2380}{819^{2}}$ or $\frac{11900}{409^{6}}$.

And therefore adding thefe two Probabilities together, the Sum will be $\frac{4370 ; 08}{0823936}$.

Now fubtracting from this, the Probability of both circumftances happening together, viz. $\frac{693770}{6823936}$ the remainder will be $\frac{3676738}{6823936}$; and this expreffes their Expectation upon the common Stake which we fuppofe to be $=1$.

But they have a farther Expectation, which is that of getting one fingle Game by Triks, which is $\frac{1716}{8192}$ or $\frac{429}{2048^{3}}$; and their Probability of not getting by Honours is $\frac{1083}{1600}\left(=\overline{1-\frac{583}{1066}}\right)$; and therefore their Probability of getting one fingle Game by Triks independently from Honours is $\frac{46+607}{3411958}$; but then if this happen they will be but equal with their Adverfaries, and therefore this Chance entitles them to no more than half of the common Stake; therefore taking the half of the foregoing fraction, it will be $\frac{464607}{6823936}$; and therefore the whole Expectation of the Dealers is $\frac{2576738++64607}{0823936}=\frac{4141345}{0.23936}$: whence there remains for thofe who have Ix of the Game $\frac{2682591}{6823936}$; which will make that the Odds for the viri againft the Ix will be 4141345 to 268259 I, which is about 3 to 2 , or fomething more, viz. 17 to II.
2°, But if thofe who have vir I of the Game are Eldeft, then their Probability of having three of the four Honours is $\frac{364}{1060}$, and their Probability of having the four Honours is $\frac{\epsilon_{9}}{1655}$, and therefore their Probability of getting their two Games by Honours is $\frac{36++69}{1660}=$ $\frac{433}{1620}$. The Probability of getting them by Triks is as before $\frac{1190}{4096}$, now adding thefe two Probabilities together, the Sum will be $\frac{3756108}{6823936}$, from which fubtracting, the Probability of both circumftances happening together, viz. $\frac{-152+n}{3.3936}$, there will remain $\frac{3 / 4 \cap 8.8}{0823930}$, and this expreffes the Expectation arifing from the Profpect of their winning at once either by Honours or by Triks.

๔ 76 The Doctrine of Chances.
But their Expectation arifing from the Profpect of getting one fingle Game, and then being upon an equal foot with their Adverfaries, found the fame way as it was in the Suppofition of their being Dealers, is $\frac{528997}{6823930}$. For the Probability of the Eldeft taking 4 Honours is $\frac{69}{1006}$, and of their taking 3 Honours, $\frac{3^{64}}{1466}$; whofe Sum taken from Unity, leaves $\frac{1233}{1060}$, for the Probability of their not getting by Honours; and this multiplied by $\frac{429}{20+3}$ the Probability of their getting one Game by Triks, gives $\frac{528957}{3411908}$; the half of which is $\frac{528957}{6823936}$. And therefore their Expectation upon the whole is $\frac{3^{22403} 38+528957}{6823936}=\frac{3769795}{6823936}$, and confequently there remains for the Ix, $\frac{305441}{6823936}$, and therefore the Odds of the viII againft the ix are now 3769795 to 305414 I , which is nearly as 95 to 77 .
From whence it follows that without confidering whether the vir i are Dealers or Eldeft, there is one time with another the Odds of fomewhat lefs than 7 to 5 ; and very nearly that of 25 to 18 .

Corollary 2.

It is a Queftion likewife belonging to this Game, what the Probability is that a Player has a given number of Trumps dealt him : particularly, it has been often taken as an equal Wager that the Dealer has at leaft 4 Trumps.
Now altho' the Solution of all fuch Queftions is included in our $\mathrm{xx}^{\text {th }}$ Problem; yet as this Game is much in ufe, I have, for the Reader's eafe, computed the following Tables; fhewing, for the Dealer as well as the other Gamefters, what the Probability is of taking precijely any affigned number of Trumps in one deal.

And thence by a continual addition of the numbers, or of fuch part of them as is neceffary, it is eafily found what the Probability is of taking at leaft that number.

Chances of the Dealer to have befides the Card turned up.	Trumps	Chances of any other Game-1 fter to have precifely.
3910797436	\bigcirc	8122425444
20112672528	I.	46929569232
41959196136	II.	110619698904
46621329040	III.	139863987120
30454255260	IV.	104897990340
12181702104	V.	48726808416
3014663652	VI.	14211985788
455999544	VII.	2583997416
Tab. I. 40714245	VIII.	284999715 Tab. II.
2010580	IX.	18095220
. 48906	X.	603174
468	XI.	8892
1	XII.	39
Sum $=15^{87} 53389900$ is the		$476260169700=$ Sum, is
commom Denominator; be-		the common Denominator
ing the Combinations of 12		being the Combinations of
Cards in 51.		13 in 5 I .

By the help of thefe Tables feveral ufeful Queftions may be refolved ; as I°. If it is afked, what is the Probability that the Dealer has precifely III Trumps, befides the Trump Card? The Anfwer, by Tab. I. is $\frac{4662}{15875}$; and the Probability of his having fome other' number of Trumps is $\frac{11213}{15875}$. But if the Queftion had been,' What is the Probability that fome other Gamefter, the eldeft hand for inftance, has precifely IV Trumps? The anfwer, by Tab. II. is $\frac{104898}{476260}$.
2°. To find the Chance of the Dealer's not having fewer than IV Trumps: add his Chances to take 0,1 , II, which are 39108, 201127, 419,592; and their Sum 659827 taken from the Denominator 1587534, and the Remainder made its Numerator, the Probability of the Dealer having IV or more Trumps will be $\frac{027707}{150753+}$ $=\frac{329}{503}$, a little above $\frac{7}{12}$. The Wager therefore that the Dealer has not IV Trumps is fo far from equal, that whoever lays it throws away above $\frac{1}{6}$ of his Stake.

But if the Wager is that the Dealer has not V Trumps, then 466213 (the Chances of his having III. Defides the Trump Card) is to be added to the Chances for $0, \mathrm{I}, \mathrm{II}$; which will make the Chance of him who lays this Wager to be nearly $\frac{317}{455}$;and that ofhis Adverfary $\frac{138}{455}$.

And hence, if Wagers are laid that the Dealer has not IV Trumps, and has not V Trumps, alternately; the advantage of him who lays in this manner will be nearly II $\frac{1}{4}$ per Cent. of his Stakes.
3°. To find the Odds of laying that the eldeft hand has at leaft III, and at leaft IV Trumps, alternately; the Numerator of the one Expectation is (by Tab. II.) 3 1501119, and of the other 17514720 , to the Denominator 47626017; whence the advantage of the Bet will be $\frac{15}{514}$, or 3 per Cent. neariy.

Again, if it is laid that the Trumps in the Dealer's hand fhall be either I, II, III or VI; the difadvantage of this Bet will be only $15^{\beta \cdot} 4^{d}$, or about $\frac{3}{4}$, per Cent.

In like manner, the Odds of any propofed Bet of this kind may be computed: And from the Numbers in the Tables, and their Combinations, different Bets may be found which fhall approach to the Ratio of Equality; or if they differ from it, other Bets may be affigned, which, repeated a certain Number of Times, fhall ballance that difference.
4°, And if the Bet includes any other Condition befides the number of Trumps, fuch as the Quality of one or more of them; then proper Regard is to be had to that reftriction.

Let the Wager be that the Eldeft has IV Trumps dealt him ; and that two of them flall be the Ace and King. The Probability of his having IV Trumps precifely is, by Tab II. $\frac{101808}{470200}$: and the different fours in 12 Cards are $\frac{12}{1} \times \frac{11}{2} \times \frac{10}{3} \times \frac{9}{4}$. But becaufe 2 out of the 12 Trumps are fpecified, all the Combinations of 4 in 12 that are favourable to the Wager are reduced to the different two's that are found in the remaining 10 Cards, which are $\frac{10}{3} \times \frac{9}{2}$. And this number is to the former as I to II: the Probability therefore is reduced by this reftriction to $\frac{1}{11}$, of what elfe it had been : that is, it is reduced from near $\frac{1}{5}$ to about $\frac{1}{5^{2}}$.

The Doctrine of Chances.
Note; thefe Tables and others of a like kind, which different Games may require, are beft computed and examined by beginning with the loweft number, and obferving the Law by which the others are formed fucceffively. As in Tab. I, putting $A=1$; and the Letters $B, C, D, \& c$. ftanding for the other Terms regularly afcending; we fhall have $B=\frac{39}{1} \times \frac{12}{1} \times A, C=\frac{38}{2} \times \frac{11}{2} \times B, D=\frac{37}{3} \times$ $\frac{10}{3} \times C$, Sc.. till we arrive at the Term $N=\frac{28}{12} \times \frac{1}{12} \times M$.
And if the correfponding Terms in Tab. II. are marked by the fame Letters dotted, then is $A^{r}=\frac{39^{\prime}}{1} \times A, B^{\prime}=\frac{38}{2} \times B_{2} C^{\prime}=\frac{37}{3} \times C_{0}$ $D^{\prime \prime}=\frac{3^{6}}{4} \times D$, \&c. up to $N^{\prime \prime}=\frac{27}{13} \times N^{\prime \prime}$

PROBLEM LI.

Of Piquet.

To find at Piquet the Probability which the Dealer bas for taking one Ace or more is three Cards, he baving none in bis Hand.

Solution.

From the number of all the Cards which are thirty-two, fubtracting twelve which are in the Dealers Hands, there remain twenty, among which are the four Aces.

From which it follows that the number of all the Chances for taking any three Cards in the bottom, is the number of Combinations which twenty Cards may afford being taken three and three ; which by the Rule given in our xv Problem is $\frac{120 \cdot 10,18}{1 \cdot 2 \cdot 3}$ or 1140 .

The number of all the Chances being thus obtained, find the number of Chañes for taking one Ace precifely with two other Cards; find next the number of Chances for taking two Aces precifely with any other Card; lafty, find the number of Chances for taking three Aces; then thefe Chances being added together, and their Sum divided by the whole number of Chances, the Quotient will exprefs the Probability required.

A 22
But

But the number of Chances for taking one Ace are 4 , and the number of Chances for taking any two other Cards, are $\frac{16}{1} \cdot \frac{16}{2}$, and therefore the number of Chances for taking one Ace and two other Cards are $\frac{4}{1} \times \frac{16 \cdot 15}{1.2}=480$, as appears from what we have faid in the Doctrine of Combinations.

If there remains any difficulty in knowing why the number of Chances for joining any two other Cards with the Ace already taken is $\frac{16 \cdot 15}{11^{2}}$, it will be eafily refolved if we confider that there being in the whole Pack but 4 Aces and 28 other Cards, out of which other Cards, the Dealer has 12 in his Hands, there remain only 16 , out of which he has a Choice, and therefore the number of Chances for taking two other Cards is what we have determined.

In like manner it will appear that the number of Chances for taking two Aces precifely are $\frac{4 \cdot 3}{1.2}$ or 6 , and that the number of Chances for taking any other Card are $\frac{16}{1}$ or 16 ; from whence it follows that the number of Chances for taking two Aces with another Card are 6×16 or 96 .
Lafly, it appears that the number of Chances for taking three Aces is equal to $\frac{4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3}=4$.
Wherefore the Probability required will be found to be $\frac{40+9+t}{114^{\circ}}$ or $\frac{580}{1140}$ or $\frac{29}{57}$, which fraction being fubtracted from Unity, the remainder will be $\frac{28}{57}$.
From whence it may be concluded that it is 29 to 28 that the Dealer takes one Ace or more in three Cards, he having none in his Hand.

The preceding Solution may be contracted by inquiring at firft what the Probability is of not taking any Ace in three Cards, which may be done thus.

The number of Cards in which the four Aces are contained being twenty, and confequently the number of Cards out of which the four Aces are excluded being fixteen, it follows that the number of Chances which there are for the taking of three Cards, among which no Ace fhall be found, is the number of Combinations which fixteen Cards may afford being taken three and three, which num-
ber of Chances by our $18^{\text {th }}$ Problem will be found to be $\frac{16 \cdot 15 \cdot 14}{1 \cdot 2 \cdot 3}$ or 560 .

But the number of all the Chances for taking any three Cards in twenty has been found to be 1140 ; from whence it follows that the Probability of not taking any Ace in three Cards, is $\frac{560}{114^{0}}$ or $\frac{28}{57}$, and therefore the Probability of the contrary, that is of taking one Ace or more in three Cards is $\frac{29}{57}$ as we had found it before.

PR O B L E M LII.

To find at Piquet the Probability which the Eldeft bas of taking an Ace in five Cards, be baving no Ace in bis Hand.

Solution.

Firft, Find the number of Chances for taking one Ace and four other Cards, which will be 7280 .

Secondly, The number of Chances for taking two Aces and three other Cards, which will be found to be 3360 .

Thirdly, The number of Chances for taking three Aces and two other Cards, which will be found to be 480 .

Fourtbly, The number of Chances for taking four Aces and any other Card, which will be found to be 16 .

Lafly, The number of Chances for taking any five Cards in t wenty, which will be found to be 15504 .

Let the Sum of all the particular Chances, viz. $7280+3360+$ $480+16$, be divided by the Sum of all the Chances, viz. by 15504 , and the Quotient will be $\frac{11136}{15504}$ or $\frac{232}{323}$ which being fubtracted from Unity, the remainder will be $\frac{91}{323}$; and therefore the Odds of the Eldeft hand taking an Ace or more in five Cards are as 232 to 91, or 5 to 2 nearly.
But if the Probability of not taking an Ace in five Cards be inquired into, the work will be confiderably fhortened; for this Probability will be found to be expreffed by $\frac{16 \times 15 \times 14 \cdot 13 \cdot 12}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}$ or 4368

182 The Doctrine of Chances.
4368 to be divided by the whole number of Chances, viz. by 15504; or 91 by 323 ; which makes the Probability of taking one or more Aces $\frac{232}{323}$ as. before:

P R O B L E M LIII.

To find at Piquet the Probability which the Eldeft bas of taking both an Ace and a King in five Cards, be baving none in bis Hand.

Solution.

Let the following Chancees be found; viz.
$\mathbf{1}^{\circ}$, For one Ace, one King, and three other Cards.
2°, For one Ace, two Kings, and two other Cards.
3°, For one Ace, three Kings, and any other Card.
4°, For one Ace, and four Kings.
5°, For two Aces, one King; and two other Cards!
6°, For two Aces, two Kings, and any other Card:
7°, For two Aces, and three' Kings:
8°, For three Aces, one King, and any other Card!
9°; For three Aces, and two Kings.
10°, For four Aces, and one King:
Among thefe Cafes, there being four pairs that are alike, viz. the fecond and fifth, the third and eighth, the fourth and tenth, the feventh and ninth; it follows that there are only fix Cafes to be calculated, whereof the firf and fixth are to be taken fingly, but the fecond;' third, fourth and feventh to be "doubled'; now the Operaration is as follows."

The firft Cafe has $\frac{4}{1} \times \frac{4}{1} \times \frac{12 \cdot 11 \cdot 10}{1 \cdot \frac{1}{3}}$ or 3520 Chances.
The fecond $\frac{4}{11} \times \frac{4.3}{1.2} \times \frac{12.11}{1.2}$ or 1584 , the double of which is 3168 .

The third $\frac{4}{1} \times \frac{4 \cdot 3 \cdot 2}{1: 2: 3} \times \frac{12}{1}$ or $192 ;$ the double of which is 384 Chances,

The fourth $\frac{4}{1} \times \frac{1 \cdot \frac{1}{1} \cdot \frac{2}{1} \cdot \frac{1}{2} \cdot 3 \cdot 4}{}$ or 4 , the double of which is 8 Chances.
The fix x b $\frac{4.3}{1.2} \times \frac{4.3}{1.2} \times \frac{12}{12}$ or 432 Chances.
The feventh $\frac{4 \cdot 3}{1.2} \times \frac{4.3 .2}{1.2 .3} \times$ or 24 , the double of which is 48 Chances.
Now the Sum of all thofe Chances being 7560 , and the whole number of Chances for taking any five Cards out of 20 being $\frac{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}$ or 15504 , it follows that the Probability required will be $\frac{7560}{15504}$ or $\frac{315}{040}$, and therefore the Probability of the contrary will be $\frac{33^{1}}{640}$, from whence it follows that the Odds againf the Eldeft hand taking an Ace and a King are 33 I to 3 15, or 21 to 20 nearly.

P R O B L E M LIV.

To find at Piquet the Probability of baving twelve Cards dealt to, without King, Queen or Knave, which Cafe is commonly called Cartes Blanches.

Solution.

Altho' this may be derived from what has been faid in the $\mathrm{xx}^{\text {th }}$ Problem, yet I fhall here prefcribe a Method which will be fomewhat more eafy, and which may be followed in many other Inftances.

Let us therefore imagine that the twelve Cards dealt to are taken up one after another, and let us confider, 1°, the Probability of the firft's being a Blank; now there being 20 Blanks in the whole Pack, and 32 Cards in all, it is plain that the Probability of it is $\frac{20}{32}$. $\mathbf{2}^{\circ}$, Let us confider the Probability of the fecond's being a Blank, which by reafun the firft Card is accounted for, and becaufe, there remain now but 19 Blanks and 31 Cards in all, will be found to be $\frac{19}{31}$; and in like manner the Probability of the third Card's being a Blank will be $\frac{13}{30}$, and fo on; and therefore the Proba-

> x4.... The Docirine of Chances.

Probability of the whole will be expreffed by the Fraction $\frac{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 0}{32 \cdot 31 \cdot 30 \cdot 29 \cdot 28 \cdot 27 \cdot 20 \cdot 25 \quad 24 \cdot 23 \cdot 22 \cdot 21}$ the number of Multiplicators in both Numerator and Denominator being equal to twelve. Now that Fraction being fhortened will be reduced to $\frac{323}{57^{799} 5^{\circ}}$ or $\frac{1}{179^{2}}$ nearly, and therefore the Odds againf Cartes Blanches are 1791 to I nearly.

PROBLEMLV.

To find bow many different Sets, effentially different from one another, one may bave at Piquet before taking in.

> SOLUTION.

Let the Suits be difpofed in order, and let the various difpofitions of the Cards be written underneath, together with the number of Chances that each difpofition will afford, and the Sum of all thofe Chances will be the thing required.

Let alfo the Letters D, H, S, C refpectively reprefent Diamonds, Hearts, Spades, and Clubs.

	D, 1	H, S,	C	Cbances.
	O, 0	0, 4,	$8=$	70
2	0, 0	0, 5,	$7=$	448
3	0, 0	0, 6,	$6=$	748
4	O, 1	I, 3,	$8=$	448
5	O, I	I, 4,	$7=$	4480
6	O, I	I, 5,	$6=$	12544
7	0, 2	2, 2,	$8=$	784
8	O, 2	2, 3,	$7=$	812544
9	0, 2	2, 4,	$6=$	54880
10	0,2	2, 5,	$5=$	87808
11	0, 3	3, 3 ,	6	87808
12	o, 3	3, 4,	$5=$	219520
13	o,	4, 4,	$4=$	343000
14	I,	1, 2,	$8=$	1792
15	I, I	I, 3,	$7=$	28672
16	I,	I, 4,	$6=$	125440
17	I,	I, 5,	$5=$	200704
18	I,	2, 2,	7	50176
19	1, 2	2,3 ,	$6=$	351232
20	I,	2, 4,	$5=$	878080
21	I,	3, 3,	$5=$	1404928
22	I,	3, 4,	$4=$	2195200
23	2,	2, 2,	$6=$	614656
24	2,	2, 3,	$5=$	2458624
25	2, 2	2, 4,	$4=$	3851600
26	2,	3, 3,	$4=$	6146560
27	3, 3	3,3 ,	$3=$	9834496
	Sum			,967,278

Which Sum would feem incredibly great, if Calculation did not prove it to be fo.

But it will not be inconvenient to fhew by one Example how the numbers expreffing the Chances have been found, for which we muft have recourfe to our $\mathrm{xx}^{\text {th }}$ and $\mathrm{xxi}^{\text {th }}$ Problems, and there examine the Method of Solution, the fame being to be obferved in this place. Let it therefore be required to affign the $19^{\text {th }} \mathrm{Cafe}$, which is for taking I Diamond, 2 Hearts, 3 Spades and 6 Clubs. Then it will eafily be feen that the variations for taking I Diamond are 8, that the variations for taking 2 Hearts are $\frac{8 \cdot 7}{1 \cdot 2}=28$, and that B b
the
the variations for taking 3 Spades are $\frac{8 \cdot 7 \cdot 6}{1 \cdot 2^{2} \cdot 3}=56$, and that the variations for taking 6 Clubs are $\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot \frac{1}{2}}{1 \cdot 2 \cdot 3 \cdot \frac{1}{5 \cdot 0}}=28$. And therefore that the number of Chances for the $19^{\text {th }}$ Cafe is the product of the feveral numbers $8,28,56,28$, which will be found 351232.

There is one thing worth obferving, which is, that when the number of Cards of any one Suit being to be combined together, exceed one half the number of Cards of that Suit, then it will be fufficient to combine only the difference between that number and the whole number of Cards in the Suit, which will make the operation fhorter; thus being to combine the 8 Clubs by fix and fix, I take the difference between eight and fix, which being 2, I combine the Cards only two and two, it being evident that as often as I take 6 Cards of one Suit, I leave 2 behind of the fame Suit, and that therefore I cannot take them oftner fix and fix, than I can take them two and two.

It may perhaps feem ftrange that the number of Sets which we have determined, notwithftanding its largenefs, yet fhould not come up to the number of different Combinations whereby twelve Cards might be taken out of thirty-two, that number being 225792840 ; but it ought to be confidered, that in that number feveral fets of the fame import, but differing in Suit might be taken, which would not introduce an effential difference among the Sets.

Remark.

It may eafily be perceived from the Solution of the preceding Problem, that the number of variations which there are in twelve Cards make it inext to impoffible to calculate fome of the Probabilities relating to Piquet, fuch as that which refults from the priority of Hand, or the Probabilities of a Pic, Repic or Lurch; however notwithftanding that difficulty, one may from obfervations often repeated, nearly eftimate what thofe Probabilities are in themfelves, as will be proved in its place when we come to treat of the reafonable conjectures which may be deduced from Experiments; for which reafon I fhall fet down fome Obfervations of a Gentleman who has a very great degree of Skill and Experience in that Game, after which I Thall make an application of them.

Hypotheses.

1°, That 'tis 5 to 4 that the Eldeft hand wins a Game.

$$
\text { The Doctrine of Chances. } 187
$$

2°, That is 2 to I, that the Eldeft wins rather without lurching than by lurching.
3°, That it is 4 to 1 , that the Youngert Hand wins rather without lurching than by lurching.

But it muft carefully be obferved that thefe Odds are reftrained to the beginning of a Game.

From whence, to avoid Fractions, we may fuppofe that the Eldeft has 75 Chances to win one Game, and the Youngeft 60.

That out of thefe 75 Chances of the Eldeft, he has 50 to win without Lurch, and 25 with a Lurch.

That of the 60 Chances of the Youngeft, he has 48 to win without a Lurch, and 12 with a Lurch.

This being laid down, I fhall proceed to determine the Probabilities of winning the Set, under all the circumftances in which A and B may find themfelves.
I°, When A and B begin, he who gets the Hand has the Odds of 6478643 to 3362857 or 23 to 20 nearly that he wins the Set.
2°, If A has I Game and B none.
Before they cut for the Hand, the Odds in favour of A are 682459 to 309067 or 38 to 23 nearly.
If A has the Hand, the Odds are 4627 to 1448 , or 16 to 5 nearly.

If B has the Hand, the Odds in favour of A are 511058 to 309067 , or 3^{8} to 23 nearly.
3°, If A has I Game, and B I Game.
He who gets the Hand has the Odds of 10039 to 8186 or 27 to 22 nearly.
4°, If A has 2 Games and B none.
Before they cut for the Hands the Odds are 59477 to I 3423, or 3 I to 7 nearly.
If A has the Hand, the Odds are 5^{117} to 958 , or 16 to 3 nearly.
If B has the Hand, the Odds in favour of A are 1151 to 307 , or 25 to 7 nearly.
5°, If A has 2 Games and B r.
Before they cut for the Hand, the Odds are 9^{2} to 43 , or 15 to 7 nearly.
If A has the Hand, the Odds are 11 to 4.

* In this Care B has 12 Chances for 1 , and 48 for $\frac{x}{2}$, but the number of all the B b 2

Chances

If B has the Hand, the Odds in favour of A are 17 to 10 .
6°, If A has 2 Games and $B 2$ Games, he who gets the Hand has 5 to 4 in his favour.

I hope the Reader will eafily excufe my not giving the Demonftration of the foregoing Calculation, it being fo eafily deduced from the Rules given before, that this would feem entirely fuperfluous.

PR O B L E M LVI.

Of Saving Clauses.

A bas 2 Cbances to beat B, and B bas 1 Cbance to beat A; but there is one Cbance which intitles them both to withdraw their own Stake, which we fuppofe equal to f; to find the Gain of A.

Solution.
This Queftion tho' eafy in itfelf, yet is brought in to caution Beginners againft a Miftake which they might commit by imagining that the Cafe, which intitles each Man to recover his own Stake, needs not be regarded, and that it is the fame thing as if it did not exift : This I mention fo much more readily, that fome people who have pretended great fkill in thefe Speculations of Chance have themfelves fallen into that error. Now there being 4 Chances in all, whereof A has 2 to gain \int, 'tis evident that the Expectation of that Gain is worth $\frac{2}{4} \int$; but A having I Chance in 4 to lofe \int, the Rifk of that is a Lofs which muft be eftimated by $\frac{1}{4} \int$, and therefore the abfolute Gain of A is $\frac{2}{4} \mathcal{S}-\frac{1}{4} \int$, or $\frac{1}{4} \rho$. But fuppofing the faving Claufe not confidered, A would have 2 Chances in 3 to win $/$, and ${ }_{1}$ Chance in 3 to lofe \int, and therefore the Expectation of his Gain

Chances between A and B are 135, therefore B has $\frac{12+24}{135}=\frac{3^{6}}{135}=\frac{4}{15}$, Odds II to 4. If B has the Hand, then he has 25 for 1,50 for $\frac{1}{2}=\frac{25+25}{135}=\frac{50}{135}$ $=\frac{10}{27}$, Odds 17 to 10. But before they cut for the Hand B has $\frac{4}{15}+\frac{10}{27}+\frac{1}{2}$ $=\frac{43}{1.3 .5}$, Odds 92 to 43 .
would be worth $\frac{7}{3} \int$, and the Rifk of his Lofs would be eftimated by $\frac{1}{3} \int$; which would make his Gain to be $\frac{2}{3} \int-\frac{1}{3} \int=\frac{1}{3} \int$. From whence it may evidently be feen that the condition of drawing Stakes is to be confidered; and indeed in this laft Cafe, there are the Odds of 2 to I that A beats B, whereas in the former it cannot be faid but very improperly that A has 2 to I the beft of the Game; for if A undertakes without any limitation to beat B, then he muft lofe if the faving Claufe happens, and therefore he has but an equality of Chance to beat or not to beat ; however it may be faid with fome propriety of Expreffion, that it is 2 to 1 that A rather beats B than that A beats him.

But to make the Queftion more general, let A and B each depofite the Sum $/ ;$ let a reprefent the Chances which A has to beat B, and b the Chances which B has to beat A; let there be alfo a certain number m of Chances which may be called common, by the happening of which A fhall be entitled to take up fuch part of the common Stake $2 \int$ as may be denominated by the fraction $\frac{p}{r}$, and B fhall be entitled to take the remainder of it.

Then 1°, it appears that the number of all the Chances being $a+b+m$, whereof there are the number a which intitle A to gain j; thence his Gain upon that fcore is $\frac{a}{a+b+m} \times f$.
2°, It appears that the number of Chances whereby A may lofe, being b, his Lofs upon that account is $\frac{b}{a+b+m} \times f$.
3°, It appears that if the Chances m fhould happen, then A would take up the part $\frac{p}{r}$ of the common Stake $2 \int$, and thereby gain $\frac{2 p}{r} \int-\int$, or $\frac{2 p-r}{r} \times \delta$. But the Probability of the happening of this is $\frac{m}{a+b+m}$; and therefore his Gain ariing from the Probability of this circumftance is $\frac{m}{a+b+m} \times \frac{\overline{2 p-r}}{r} \times f$.
From all which it appears that his abfolute Gain is $\frac{a}{a+b+m} \times \int-\frac{b}{a+b+m} \times \int+\frac{m}{a+b+m} \times \frac{\frac{2 p-r}{r}}{\frac{r}{r}} \times \rho$.
Now fuppofe there had been no common Chances, the Gain of A would have been $\frac{a-b}{a+b} \times f$.

Let it therefore be farther required to affign what the proportion of p to r ought to be, to make the Gain of A to be the fame in both Cafes.

This will be eafily done by the Equation $\frac{a-b}{a+b+m}+\frac{2 p m-r m}{r \times a+b+m}$ $=\frac{a-b}{a+b}$; wherein multiplying all the Terms by $a+b+m$ we flall have the new Equation $a-b+\frac{2 p m-r m}{r}=\frac{a a+a m-b b-b m}{a+b}$ or $\frac{2 p m-r m}{r}=\frac{a m-l_{m}}{a+b}$, or $\frac{2 p-r}{r}=\frac{a-b}{a+b}$, or $2 p a-r a+$ $2 b p-b r=r a-b r$, or $2 p a+2 b p=2 r a$, and therefore $p a+b p=r a$, and $\frac{p}{r}=\frac{a}{a+b}$. From which we may conclude, that if the two parts of the common Stake $2 \int$ which A and B are refpectively to take up, upon the happening of the Chances m, are refpectively in the proportion of a to b, then the common Chances give no advantage to A above what he would have had if they had not exifted.

PROBLEM LVII.

Odds of Chance and Odds of Money compared.

A and B playing together depofit S^{L}. apiece; A bas 2 Cbances to win f , and B I Cbance to win f , whereupon A tells B that be will play with bim upon an equality of Cbance, if be B will Set bim $2 f$ to If, to which B affents: to find whether A bas any advantage or difadvantage by tbat Bargain.

Solution.
In the firf circumflance, A having 2 Chances to win S, and I Chance to lofe \int, his Gain, as may be deduced from the Introduction, is $\frac{2 f-1}{3}=\frac{1}{3} \int$.
In the fecond circumfance, A having I Chance to win $2 \mathcal{F}$, and I Chance to lofe \int, his Gain is $\frac{2 f-\rho}{2}=\frac{1}{2} \int$, and therefore he gets $\frac{1}{6} \int$ by that Bargain.
But if B, after the Bargain propofed, fhould anfwer, let us play upon an equality of Chance, and you fhall ftake but $\frac{1}{2} /$, and I fhall fake f, and fo I fhall have fet 2 to I , and that A fhould affent : then he has I Chance to win \int, and I Chance to lofe $\frac{1}{2} \int_{2}$, and therefore
his Gain is $\frac{\rho-\frac{1}{2} \int}{2}=\frac{1}{4} \int$, and therefore he is wore by $\frac{1}{12} \int$ than he was in the firft circumftance.

But if A, after this propofal of B, anfwers; let us preferve the quantity of the whole Stake $2 \int$, but do you fake $\frac{4}{3} \int$, and I fall fake $\frac{2}{3} \delta$, whereby the proportion of 2 to 1 will remain, and that B affents; then A has I Chance to win $\frac{4}{3} \int$ and I Chance to lone $\frac{2}{3} \int$, which makes his Gain to be $\frac{\frac{4}{3} \int-\frac{2}{3} \int}{2}=\frac{2}{3} \int-\frac{1}{3} \int=\frac{1}{3} \delta$, which is the fame as in the firft circumftance.

And univerfally, A having a Chances to win $/$, and B having b Chances to win \int, if they Could agree afterwards to play upon an equality of Chance, and ret to each other the reflective Stakes $\frac{2 b}{a+b} \int$ and $\frac{2 a}{a+b} \int$, then the Gain of A would thereby receive no alteration, it being in both Cafes $\frac{a-\dot{b}}{a+b} \int$.

PROBLEM LVIII.
 Of the Duration of Play.

Two Gamefters A and B whole proportion of gkill is as a to b , each having a certain number of Pieces, play togetber on condition that as often as .A wins a Game, B bal give bim one Piece; and that as often as B wins a Game, A ball give bim one Piece; and that they ceafe not to play till fuck time as either one or the other has got all the Pieces of bis Adverfary: now let us Suppose iwo Spectators R and S concerning themselves about the ending of the Play, the first of them laying that the Play will be ended in a certain number of Games which be affigns, the other laying to the contray. To find the Probability that S has of winning. bis wager.

Solution.

This Problem having fome difficulty, and it having given me occafion to inquire into the nature of fome Series naturally refulting from its Solution, whereby I have made fome improvements in the Method of fumming up Series, I think it neceffary to begin with the fimpleft Cafes of this Problem, in order to bring the Reader by degrees to a general Solution of it.

CASEI.

Let 2 be the number of Pieces, which each Gamefter has; let alfo 2 be the number of Games about which the Wager is laid : now becaufe 2 is the number of Games contended for, let $a+b$ be raifed to its Square, viz. $a a+2 a b+b b$; then it is plain that the Term $2 a b$ favours S, and that the other two are againft him; and confequently that the Probability he has of winning is $\frac{2 a b}{a+b^{2}}$.

Coroleary

If a and b are equal, neither R or S have any Advantage or Difadvantage; but if a and b are unequal, R has the Advantage.

Case II.

Let 2 be the number of Pieces of each Gamefter, as before, but let 3 be the number of Games about which the Wager is laid: then $a-b$ being raifed to its Cube, viz. $a^{3}+3 a a b+3 a b b+b^{3}$, it will be feen that the two Terms a^{3} and b^{3} are contrary to S, they denoting the number of Chances for winning three times together; it will alfo be feen that the other two Terms $3 a a b$ and $3 a b b$ are partly for him, partly againft him. Let therefore thofe two Terms be divided into their proper parts, viz. $3 a a b$ into $a a b+a b a+b a a$, and $3 a b b$ into $a b b+b a b+b b a$, and it will plainly be perceived that out of thofe fix parts there are four which are favourable to S, viz. $a a b, b a a, a b b, b b a$ or $2 a a b+2 a b b$; from whence it follows that the Probability which S has of winning his Wager will be $\frac{2 a a b+2 c b b}{a+a^{3}}$, or dividing both Numerator and Denominator by $a+b$, it will be found to be $\frac{2 a b}{a+b^{2}}$, which is the fame as in the preceding Cafe. The reafon of which is, that the winning of a certain number of even Pieces in an odd number of Games is impoffible, unlefs it was done in the even number of Games immediately preceding
the odd number, no more than an odd number of Pieces can be won in an even number of Games, unlefs it was done in the odd number immediately preceding it; but ftill the Problem of winning an even number of Pieces in an odd number of Games is rightly propofed; for Inftance, the Probability of winning either of one fide or the other, 8 Pieces in 63 Games; for, provided it be done either before or at the Expiration of 62 Games, he who undertakes that it fhall be done in 63 wins his Wager.

Case III.

Let 2 be the number of Pieces of each Gamefter, and 4 the number of Games upon which the Wager is laid : let therefore $a+b$ be raifed to the fourth Power, which is $a^{4}+4 a^{3} b+6 a a b b-4 a b 3$ $+b^{4}$; which being done, it is plain that the Terms $a^{4}+4 a^{3} b+$ $4 a b^{3}+b^{4}$ are wholly againft S, and that the only Term $6 a a b b$ is partly for him, and partly againft him, for which reafon, let this Term be divided into its parts, viz. $a a b b, a b a b, a b b a, b a a b, b a b a$, $b b a a$, and 4 of thefe parts, viz. $a b a b, a b b a, b a a b, b a b a$, or $4 a a b b$ will be found to favour S; from which it follows that his Probability of winning will be $\frac{4 a a b b}{a+b^{+}}$.
Case IV.

If 2 be the number of Pieces of each Gamefter, and 5 the number of Games about which the Wager is laid, the Probability which S has of winning his wager will be the fame as in the preceding Cafe, viz. $\frac{4 a a b b}{a+b^{4}{ }^{4}}$

Univerfally, Let 2 be the number of Pieces of each Gamefter, and $2+d$ the number of Games upon which the Wager is laid; and the Probability which S has of winning will be $\frac{\frac{2 a b}{1+\frac{1}{2}}+\frac{1}{2} d}{a+b^{2}+d^{-}}$ if d be an even number; or $\frac{\overline{2 a b} \frac{1+d}{2}}{\overline{a+b}+d}$ if d be odd, writing $d-1$ inftead of d.
CASEV.

If 3 be the number of Pieces of each Gamefter, and $3+d$ the number of Games upon which the Wager is laid, then the Probabi-

C c
lity
lity which S has of winning will be $\frac{\overline{3 a b} 1+\frac{1}{2} d}{a+b)^{2}+d}$ if d be an even number, or $\frac{\overline{3 a b} \frac{1+d}{2}}{\overline{a+b-b}{ }^{1+a}}$ if it be odd.
CASE VI.

If the number of Pieces of each Gamefter be more than 3, the Expectation of S, or the Probability there is that the Play fall not be ended in a given number of Games, may be determined in the following manner.

A General. Rule for determining rabat Probability there is that the Play foal not be determined in a given number of Games.

Let n be the number of Pieces of each Gamefter. Let also $n+d$ be the number of Games given; rife $a+b$ to the Power n, then cut off the two extream Terms, and multiply the remainder by $a a+2 a b+b b$: then cut off again the two Extreams, and multiply again the remainder by $a a+2 a b+b b$, frill rejecting the two Extreams ; and fo on, making as many Multiplications as there are Units in $\frac{1}{2} d$; make the laft Product the Numerator of a Fraction whore Denominator let be $\overline{a+b} b^{n+d}$, and that Fraction will exprefs the Probability required, or the Expectation of S upon a common Stake I , fuppofed to be laid between R and S; fill observing that if d be an odd number, you write d - I in its room.

Example I.

Let 4 be the number of Pieces of each Gamefter, and io the number of Games given: in this Cafe $n=4, n+d=10$; wherefore $d=6$, and $\frac{1}{2} d=3$. Let therefore $a+b$ be railed to the fourth Power, and rejecting continually the extreams, let three Multiplications be made by $a a+2 a b+b b$. Thus,

$$
\begin{aligned}
& a^{4} \mid+4 a^{3} b+6 a a b b+4 a b^{3}+b^{4} \\
& a a+2 a b+6 b \\
& \begin{array}{l}
4^{5} b \mid+6 a^{4} b b+4 a^{3} \\
\\
+8 a^{4} b b+12 a^{3} b^{3} b^{3}+8 a a b^{4} \\
+4 a^{3} b^{3}+6 a b^{4}+4 a b^{5}
\end{array}
\end{aligned}
$$

$14 a^{4} b b+20 a^{2} b^{3}+14 a a b^{4}$
$\frac{a a+2 a b+6 b}{14^{6} a b b+20 a^{5} b^{3}+14 a^{4} b^{4}}$
$+28 a^{5} b^{3}+40 a^{4} b^{4}+28 a^{2} b^{5}$
$\frac{+14 a^{4} b^{+}+20 a^{3} b^{5}+14 a a b^{6}}{48 a^{5} b^{3}+68 a^{4} b^{4}+48 a^{3} b^{5}}$
$\frac{a a+2 a b+6 b}{48 a^{7} b^{3}+68 a^{6} b^{4}+48 a^{5} b^{5}}$
$+96 a^{6} b^{4}+136 a^{5} b^{5}+96 a^{3} b^{6}$
$\frac{+48 a^{5} b^{5}+68 a^{4} b^{6}+48 a^{4} b^{7}}{164 a^{6} b^{4}-23^{2} a^{5} b^{5}+164 a^{4} b^{6}}$

Wherefore the Probability that the Play will not be ended in $\mathrm{I} \circ$ Games will be $\frac{164 a^{6} b++232555+1644^{4} b^{6}}{a+b)^{10}}$, which Expreffion will be reduced to $\frac{560}{1024}$, if there be an equality of Skill between the Gamefters; now this Fraction $\frac{560}{1024}$ or $\frac{35}{64}$ being fubtracted from Unity, the remainder will be $\frac{29}{64}$, which will exprefs the Probability of the Play's ending in io Games, and confequently it is 35 to 29 that, if two equal Gamefters play together, there will not be four Stakes loft on either fide, in 10 Games.
N. B. The foregoing operation may be very much contracted by omitting the Letters a and b, and reftoring them after the laft Multiplication; which may be done in this manner. Make $n+\frac{1}{2} d-\mathrm{I}$ $\doteq p$, and $\frac{1}{2} d+i=q$; then annex to the refpective Terms refulting from the laft Multiplication the literal Products $a\left\{b z, a p-1 b_{i}+-\right.$, $a p-2 b q+z, \&<c$.

Thus in the foregoing Example, inftead of the firft Multiplicand $4 a^{3} b+6 a a b b+4 a b^{3}$, we might have taken only $4+6+4$, and inftead of multiplying three times by $a a+2 a b+b b$, we might have multiplied only by $1+2+1$, which would have made the laft Terms to have been $164+232+164$. Now fince that $n=4$ and $d=6, p$ will be $=6$ and $q=4$, and confequently the literal Products to be annexed refpectively to the Terms $164+232$ +164 will be $a^{6} b^{4}, a^{5} b^{5}, a^{4} b^{6}$, which will make the Terms refulting from the laft Multiplication to be $164 a^{6} b^{4}-1-23^{2} a^{\circ} b^{5}+1-164 a^{4} b^{6}$, as they had been found before.

Example II.

Let 5 be the number of Pieces of each Gamefter, and 10 the number of Games given: let alfo the proportion of Skill between A and B be as 2 to I .

Since $n=5$, and $n+d=10$, it follows that $d=5$. Now d being an odd number muft be fuppofed $=4$, fo that $\frac{1}{2} d=2$: let therefore $1+1$ be raifed to the fifth Power, and always rejecting the Extreams, multiply twice by $1+2+1$, thus

$$
\begin{gathered}
\begin{array}{c}
1+5+10+10+5 \mid+1 \\
1+2+1
\end{array} \\
\begin{array}{c}
51+10+10+5 \\
+10+20+20+10 \\
+5+10+10 \mid+5
\end{array} \\
\hline 20+35+35+20
\end{gathered}
$$

$$
\begin{aligned}
& 20+35+35+20 \\
& \begin{array}{c}
201+2+1
\end{array} \\
& \begin{array}{c}
+35+35+20 \\
+40+70+70+40 \\
+20+35+351+20
\end{array} \\
& \hline 75+125+125+75
\end{aligned}
$$

Now to fupply the literal Products that are wanting, let $n+\frac{1}{2} d-1$ be made $=p$, and $\frac{1}{2} d+1=q$, and the Products that are to be annexed to the numerical quantities will be $a p b ?$, $a^{p-1} b q+1, a p-2 b q+2, a p-3 b q+3$, $8 c \mathrm{c}$. wherefore n, in this Cafe, being $=5$, and $d=4$, then p will be $=6$, and $q=3$, it follows that the Products to be annexed in this Cafe be $a^{5} b^{3}, a^{5} b^{4}, a^{4} b 5, a^{3} b^{6}$, and confequently the Expectation of S will be found to be

N. B. When n is an odd number, as it is in this Cafe, the Expectation of S will always be divifible by $a+b$. Wherefore dividing both Numerator and Denominator by $a+b$, the foregoing Expreffion will be reduced to

$$
\frac{75 a 5 b^{3}+50 a+b 4+75 a 3 b 5}{a+b^{8}} \text { or } 25 a^{3} b^{3} \times \frac{\frac{3 a+2 a b+3 b b}{a+b^{8}}}{}
$$

Let now a be interpreted by 2 , and b by I , and the Expectation of S will become $\frac{3800}{0561}$.

P R O B L E M LIX.

The fame things being given as in the preceding Problem, to find the Expectation of R , or otherwife the Probability that the Play will be ended in a given number of Games.

Solution.

Firf, It is plain that if the Expectation of S obtained by the preceding Problem be fubtracted from Unity, there will remain the Expectation of R.

Secondly, Since the Expectation of S decreafes continually, as the number of Games increafes, and that the Terms we rejected in the former Problem being divided by $a a+2 a b+b b$ are the Decrement of his Expectation; it follows that if thofe rejected Terms be divided continually by $a a+2 a b+b b$ or $a \overline{+b}^{2}$, they will be the Increment of the Expectation of R. Wherefore the Expectation of R may be expreffed by means of thofe rejected Terms. Thus in the fecond Example of the preceding Problem, the Expectation of R expreffed by means of the rejected Terms will be found to be

In like manner, if 6 were the number of the Pieces of each Gamefter, and the number of Games were 14, it would be found that the Expectation of R would be

$$
\frac{a^{6}+b^{6}}{a+b^{6}} \times 1+\frac{-\frac{6 a a}{a+b b^{2}}+\frac{27 a a b b}{a+b 4}+\frac{11, a^{2} b^{5}}{a+b^{6}}+\frac{429}{a+b^{8}} a^{4} b^{4}}{a}
$$

And if 7 were the number of Pieces of each Gamefter, and the number of Games were 15 , then the Expectation of R would be found to be
N. B. The number of Terms of thefe Series will always be equal to $\frac{1}{2} d+1$, if d be an even number, or to $\frac{d+1}{2}$, if it be odd.

Thirdly,

198 The Doctrine of Chances.

Thirdly, All the Terms of thefe Series have to one another certain Relations, which being once difcovered, each Term of any Series refulting from any Cafe of this Problem, may be eafily generated from the preceding ones.

Thus in the firft of the two laft foregoing Series, the numerical Coefficient belonging to the Numerator of each Term may be derived from the preceding, in the following manner. Let $\mathrm{K}, \mathrm{L}, \mathrm{M}$ be the three laft Coefficients, and let N be the Coefficient of the next Term required; then it will be found that N in that Series will conftantly be equal to $6 \mathrm{M}-9 \mathrm{~L}+2 \mathrm{~K}$. Wherefore if the Term which would follow $\frac{420 a^{4} b 4}{4+b+4+}$ in the Cafe of 16 Games given, were defired; then make $M=429, L=110, K=27$, and the following. Coefficient will be found 1638 . From whence it appears that the Term itfelf would be $\frac{16384565}{a+b 66^{10}}$.

Likewife, in the fecond of the two foregoing Series, if the Law by which each Term is related to the preceding were demanded, it might thus be found. Let $\mathrm{K}, \mathrm{L}, \mathrm{M}$ be the Coefficients of the three laft Terms, and N the Coefficient of the Term defired; then N will in that Series conftantly be equal to ${ }_{7} \mathrm{M}-14 \mathrm{~L}+7 \mathrm{~K}$, or $\mathrm{M}-2 \mathrm{~L}+\mathrm{K} \times \%$. Now this Coefficient being obtained, the Term to which it belongs is formed immediately.

But if the univerfal Law by which each Coefficient is generated from the preceding be demanded, it will be expreffed as follows.

Let n be the number of Pieces of each Gamefter : then each Coefficient contains
n times the laft
$-n \times \frac{n-3}{2}$ times the laft but one
$+n \times \frac{n-1}{2} \times \frac{n-5}{3}$ times the laft but two
$-n \times \frac{n-5}{2} \times \frac{n-6}{3} \times \frac{n-7}{4}$ times the laft but three $+n \times \frac{n-6}{2} \times \frac{n-7}{3} \times \frac{n-8}{4} \times \frac{n-9}{5}$ times the laf but four.

Thus tine number of Pieces of each Gamefter being 6, the firt Term n would be $=6$, the fecond Term $n \times \frac{n-3}{2}$ would be $=9$, the third Term $n \times \frac{n-4}{2} \times \frac{n-5}{3}$ would be $=2$. The reft of the Terms vaniming in this Cafe. Wherefore if $\mathrm{K}, \mathrm{L}, \mathrm{M}$ are the thrce
laft Coefficients, the Coefficient of the following Term will be 6M$9 \mathrm{~L}+2 \mathrm{~K}$.

Fourtbly, The Coefficient of any Term of thefe Series may be found independently from any relation they may have to the preceding : in order to which, it is to be obferved that each Term of there Series is proportional to the Probability of the Play's ending in a certain number of Games precifely : thus in the Series which exprefies the Expectation of R, when each Gamefter is fuppofed to have 6 Pieces ; viz.
the laft Term being multiplied by the common Multiplicator $\frac{a^{6}+b^{6}}{a+b^{6}}$ fet down before the Series, the Product $\frac{42\left(2 a+4+5 \times a^{\circ}+1^{6}\right.}{a+b}$ will denote the Probability of the Play's ending in 14 Games precifely. Wherefore if that Term were defired which expreffes the Probability of the Play's ending in 20 Games precifely, or in any number of Games denoted by $n+d$, I fay that the Coefficient of that Term will be

$$
\frac{n}{1} \times \frac{n+d-1}{2} \times \frac{n+d-2}{3} \times \frac{n+d-3}{4} \times \frac{n+d-4}{5}, \text { \&c. continued }
$$

to fo many Terms as there are Units in $\frac{1}{2} d$.
$-\frac{3^{n}}{1} \times \frac{n+d-1}{2} \times \frac{n+d-2}{3} \times \frac{n+d-3}{4} \times \frac{n+d-4}{5}$, \&cc. continued. to fo many Terms as there are Units in $\frac{1}{2} d-n$.
$+\frac{5 n}{1} \times \frac{n+d-1}{2} \times \frac{n+d-2}{3} \times \frac{n+i-3}{4} \times \frac{n+d-4}{5}$, \&cc. continued to fo many Terms as there are Units in $\frac{1}{2} d-2 n$.
$-\frac{7 n}{1} \times \frac{n+d-1}{2} \times \frac{n+d-2}{3} \times \frac{n+d-3}{4} \times \frac{n+d-4}{5}$, \&CC. continued to fo many Terms as there are Units in $\frac{1}{2} d-3 n$. \&c.

Let now $n+d$ be fuppofed $=20, n$ being already fuppofed $=6$, then the Coefficient demanded will be found from the general. Rule to be

$$
\begin{aligned}
\frac{6}{1} \times \frac{19}{2} \times \frac{18}{3} \times \frac{17}{4} \times \frac{16}{5} \times \frac{15}{6} \times \frac{14}{7} & =23256 \\
-\frac{18}{1} & =-18
\end{aligned}
$$

Where-

Wherefore the Coefficient demanded will be $23256-18=$ 2323^{8}, and then the Term itfelf to which this Coefficient does belong, will be $\frac{-23238 a 7 b 7}{a+6} 1+4$, and confequently the Probability of the Play's ending in 20 Games precifely will be $\frac{a^{6}+b^{6}}{a+b^{6}} \times \frac{23238 a^{7} b 7}{a+b+4}$.

But fome things are to be obferved about this formation of the Coefficients, which are,

Firf ℓ, that whenever it happens that $\frac{1}{2} d$, or $\frac{1}{2} d-n$, or $\frac{1}{2} d-2 n$, or $\frac{1}{2} d-3 n$, \&c. expreffing refpectively the number of Multiplicators to be taken in each Line, are $=0$, then I ought to be taken to fupply that Line.

Secondly, That whenever it happens that thofe quantities $\frac{1}{2} d$, or $\frac{1}{2} d-n$, or $\frac{1}{2} d-2 n$, or $\frac{1}{2} d-3 n$, \&cc. are lefs than nothing, otherwife that they are negative, then the Line to which they belong, as well as all the following, ought to be cancelled.

P R O B L E M LX.

Suppofing A and B to play together till fuch time as four Stakes are won or loft on either fide; what muft be their proportion of Skill, otherwife what mult be their proportion of Chances for winning any one Game alfigned, to make it as probable that the Play will be ended in four Games as not?

Solution.

The Probability of the Play's ending in four Games is by the preceding Problem $\frac{-a^{4}+b 4}{a+b ;} \times I$: now becaufe, by Hypothefis, it is to be an equal Chance whether the Play ends or ends not in four Games ; let this Expreffion of the Probability be made $=\frac{1}{2}$, then we Chall have the Equation $\frac{a^{4}+b 4}{a+b b^{4}}=\frac{1}{2}$: which, making $b, a:$: $1, z$, is reduced to $\frac{z^{4}+1}{z+14}=\frac{1}{2}$, or $z^{4}-4 z^{3}-6 z z-4 z$ $+1=0$. Let $12 z z$ be added on both fides of the Equation, then will $z^{4}-4 z^{3}+6 z z-4 z+1$ be $=12 z z$, and extracting the Square-

Square-root on both fides, it will be reduced to this quadratic Equation, $z z-2 z+1=z \sqrt{ } 12$, of which the two Roots are $z=5.274$ and $z=\frac{1}{5.274}$. Wherefore whether the Skill of A be to that of B, as 5.274 to I , or as I to 5.274 , there will be an Equality of Chance for the Play to be ended or not ended in four Games.

P R O B L E M LXI.

Suppofing that A and B play till fuch time as four Stakes are won or loft: What muft be their proportion of Skill to make it a Wager of three to one, that the Play will be ended in four Games?

Solution.

The Probability of the Play's ending in four Games arifing from the number of Games 4, from the number of Stakes 4, and from the proportion of Skill, viz. of a to b, is $\frac{a^{4}+b^{t}}{a^{+}+b_{+}}$; the fame Probability arifing from the Odds of three to one, is $\frac{3}{4}$: Wherefore $\frac{a^{4}+b^{4}}{a^{+} b^{+}}={ }_{4}^{3}$, and fuppofing $b, a:: \mathrm{I}, z$, that Equation will be changed into $\frac{z^{4}+1}{z+1+1}=\frac{3}{4}$ or $z^{4}-12 z^{3}+38 z z-12 z+1$ $=56 z z$, and extracting the Square Root on hoth fides, $z z-6 z$ $+_{1}=z \sqrt{ } 56$, the Roots of which Equation will be found to be 13.407 and $\frac{1}{13.407}$: Wherefore if the Skill of either be to that of the other as 13.407 to I , 'tis a Wager of three to one, that the Play will be ended in 4 Games.

PROBLEM LXII.

Suppofing that A and B play till fucb time as four Stakes are won or loft; What muft be their proportion of Skill to make it an equal Wrager that the Play will be ended in fix Games?

Solution.
The Probability of the Play's ending in fix Games, arifing from the given number of Games 6, from the number of Stakes 4, and

D d
from
from the proportion of Skill a to b, is $\frac{n^{2}+b^{2}}{\overline{a+b}+} \times \overline{\frac{1+a b}{a+b}}$; the fame Probability arifing from an equality of Chance, is $=\frac{1}{2}$, from whence refults the Equation $\frac{a^{4}+b+}{\overline{a+b}+b} \times \overline{\overline{1+a a b}}=\frac{1}{a+b}=$, which making $b, a:: \mathrm{r}, z$ mult be changed into the following $z^{6}+6 z^{5}$ $-13 z^{4}-20 z^{3}-13 z z+6 z+1=0$

In this Equation, the Coefficients of the Terms equally diftant from the Extreams, being the fame, let it be fuppofed that the Equation is generated from the Multiplication of two other Equations of the fame nature, viz. $z z-y z+1=0$, and $z^{4}+p z 3+q z z+$ $p z+\mathrm{I}=0$. Now the Equation refulting from the Multiplication of thofe two will be

$$
\begin{gathered}
z^{6}-y z^{5}-1 z^{4}+2 p z^{3}+p z+1=0 . \\
+p z^{5}-p y z^{4}-q y z^{3}-y z
\end{gathered}
$$

which being compared with the firf Equation, we fhall have $p-y=6,1-p y+q=-13,2 p-q y=-20$, from whence will be deduced a new Equation, viz. $y^{3}+6 y y-16 y-32=0$; of which one of the Roots will be 2.9644, and this being fubftituted in the Equation $z z-y z+1=0$, we fhall at laft come to the Equation $z z-2.9644 z+1=0$, of which the two Roots will be 2.576 and $\frac{1}{2.57^{6}}$; it follows therefore that if the Skill of either Gamefter be to that of the other as 2.576 to 1 , there will be an equal Chance for four Stakes to be loft or not to be loft, in fix Games.

Corollary

If the Coefficients of the extream Terms of an Equation, and likewife the Coefficients of the other Terms equally diftant from the Extreams be the fame, that Equation will be reducible to another, in which the Dimenfions of the higheft Term will not exceed half the Dimenfions of the higheft Term in the former.

PROBLEM LXIII.

Suppofing A and B whofe proportion of Skill is as a to b , to play together till fuch time as A either wins a certain number q of Stakes, or B fome otber number p of them: what is the Probability that the Play will not be ended in a given number of Games (n)?

Solution.

Multiply the Binomial $a+b$ fo many times by it felf as there are Units in $n-1$, always obferving after every Multiplication to reject thofe Terms in which the Dimenfions of the Quantity a exceed the Dimenfions of the Quantity b, by q; as alfo thofe Terms in which the Dimenfions of the Quantity b exceed the Dimenfions of the Quantity a, by p; then Thall the laft Product be the Numerator of a Fraction expreffing the Probability required, of which Fraction the Denominator mutt be the Binomial $a+b$ raifed to that Power which is denoted by n.

Example.

Let p be $=3, q=2$, and let the given number of Games be $=7$. Let now the following Operation be made according to the foregoing Directions.

$$
\begin{aligned}
& \begin{array}{l}
a+b \\
\frac{a+b}{a a 1+2 a b}+b b
\end{array} \\
& a+b \\
& 2 a a b+3 a b b \mid+b^{3} \\
& \frac{a+b}{2 a^{3} b \mid+5 a a b b}+3 a b^{3} \\
& \frac{a+b}{5 a^{3} b b+8 a a b^{3}}+3 a b^{4} \\
& a+b \\
& 5^{a^{4} b b-1+13 a^{3} b^{3}+8 a a b^{4}} \\
& \frac{a+b}{13 a^{4} b^{3}+21 a^{3} b^{4} \mid-1-8 a b^{5}}
\end{aligned}
$$

From this Operation we may conclude, that the Probability of the Play's not ending in 7 Games is equal to $\frac{13 a^{4+/ 3}+21 a: b 4}{a+b} 7$. Now if an equality of Skill be fuppofed between A and B, the Expreffion of this Probability will be reduced to $\frac{13+21}{128}$ or $\frac{17}{64}$: Wherefore the Probability of the Play's ending in 7 Games will be $\frac{47}{64}$; from which it follows that it is 47 to ${ }_{1} 7$ that, in feven Games, either A wins two Stakes of B, or B wins three Stakes of A.

$$
\text { D d } 2
$$

PR O-

P R O B L E M LXIV.

The fame things being fuppofed as in the preceding Problem, to find the Probability of the Play's ending in a given number of Games.

Solution.
Firf, If the Probability of the Play's not ending in the given number of Games, which we may obtain from the preceding Problem, be fubtracted from Unity, there will remain the Probability of its ending in the fame number of Games.

Secondly, This Probability may be expreffed by means of the Terms rejected in the Operation belonging to the preceding Problem: Thus if the number of Stakes be 3 and 2, the Probability of the Play's ending in 7 Games may be expreffed as follows.

$$
\begin{aligned}
& \frac{a a}{a+b^{2}} \times \frac{1+\frac{2 a b}{a+b b^{2}}+\frac{5 a a b b}{a+b)^{4}}}{\frac{b^{3}}{a+b^{3}}} \times \overline{1+\frac{3 a b}{a+b^{2}}+\frac{8 a a b b}{a+b^{4}}}
\end{aligned}
$$

Suppofing both a and b equal to Unity; the Sum of the firft Series will be $=\frac{29}{64}$, and the Sum of the fecond will be $\frac{18}{64}$; which two Sums being added together, the aggregate $\frac{47}{64}$ expreffes the Probability that, in feven Games, either A fhall win two Stakes of B, or B three Stakes of A.

Thirdly, The Probability of the Play's ending in a certain number of Games is always compofed of a double Series, when the Stakes are unequal: which double Series is reduced to a fingle one, in the Cafe of an Equality of Stakes

The firf Series always expreffes the Probability there is that A, in a given number of Games, or fooner, may win of B the number q of Stakes, excluding the Probability there is that B before that time may have been in a circumftance of winning the number p of Stakes; both which Probabilities are not inconfiftent together: for A, in fifteen Games for Inftance or fooner, may win two Stakes of B, though B before that time may have been in a circumftance of winning three Stakes of A.

The fecond Series always expreffes the Probability there is that B, in that given number of Games, may win of A a certain num-
ber p of Stakes, excluding the Probability there is that A, before that time, may win of B the number q of Stakes.

The firft Terms of each Series may be reprefented refpectively by the following Terms.
$\frac{a 9}{a+b 99} \times 1+\frac{q a b}{a+b b^{-}}+\frac{9 \cdot 9+3 \cdot a a b b}{1 \cdot 2 \cdot \overline{a+b} b^{4}}+\frac{9 \cdot 9+1 \cdot a+5 \cdot a^{3 b i}}{1 \cdot 2 \cdot 3 \cdot a+b^{\circ}}$
$+\frac{9 \cdot 9+5 \cdot 9+6 \cdot 9+7 \cdot a^{4} b 4}{1 \cdot \frac{2 \cdot 3 \cdot 4 \cdot a+b)^{8}}{}}, \& \mathrm{cc}$.
$\frac{a^{p}}{a+b \cdot p} \times 1+\frac{p a b}{a+b^{2}}+\frac{p \cdot p+3 \cdot a a b b}{1 \cdot 2^{2} \cdot a+b b^{4}}+\frac{p \cdot p+4 \cdot p+5 \cdot a^{i} b^{3}}{1 \cdot 2 \cdot 3 \cdot a+b^{0}}$
$+\frac{p \cdot 1+; \cdot p+n \cdot p+7 \cdot a^{+6+}}{1 \cdot 2 \cdot 3: 4 \cdot a+b^{4}}, \& c$.
Each of thefe Series continuing in that regularity till fuch time as there be a number p of Terms taken in the firf, and a number q of Terms taken in the fecond; after which the Law of the continuation breaks off.

Now in order to find any of the Terms following in either of there Series, proceed thus: let $p+q-2$ be called l; let the Coefficient of the Term defired be T; let alfo the Coefficients of the preceding Terms taken in an inverted order, be S, R, Q, P, \&cc. then will T be equal to $I S-\frac{l-1}{1} \times \frac{l-2}{2} R+\frac{l-2}{1} \times \frac{l-3}{2} \times$ $\frac{l-4}{3} \mathrm{Q}-\frac{l-3}{1} \times \frac{l-4}{2} \times \frac{l-5}{3} \times \frac{l-6}{4} \mathrm{P}, \& \mathrm{c}$. Thus if p be $=3$ and $q=2$. then l will be $3+2-2=3$, wherefore $l S-$ $\frac{l-1}{1} \times \frac{1-2}{2} \mathrm{R}$ would in this Cafe be equal to ${ }_{3} \mathrm{~S}-\mathrm{R}$, which fhews: that the Coefficient of any Term defired would be three times the laft, minus once the laft but one.

To apply this, let it be required to find what Probability there is that in fifteen Games or fooner, either A fhall win two Stakes of B, or B three Stakes of A; or which is all one, to find what Probability there is that the Play fhall end in fifteen Games at fartheft ; A and B refolving to play till fuch time as A either wins two Stakes or B three.

Let 2 and 3, in the two foregoing Series, be fubftituted refpectively in the room of q and p, the three firf Terms of the firf $\mathrm{Se}-$ ries will be, retting afide the common Multiplicator, $1+\frac{a b}{a+b^{2}}$ $+\frac{-5 a a b b}{a+b^{4}}$: likewife the two firft Terms of the fecond will be $1+\frac{3 a b}{a+b^{2}}$. Now becaufe the Coefficient of any Term defired in:

206 The Doctrine of Chances.

each Series is refpectively three times the laft, minus once the laft but one, it follows that the next Coefficient in the firft Series will be found to be 13, and by the fame Rule the next to it 34, and fo on. In the fame manner, the next Coefficient in the fecond Series will be found to be 8 , and the next to it 2 I , and fo on. Wherefore reftoring the common Multiplicators the two Series will be

$+\frac{800 h^{1}}{a+\lambda}+\frac{23^{10} a^{0} 6}{a+b 1^{12}}$.

If we fuppofe an equality of Skill between A and B, the Sum of the firft Series will be $\frac{18778}{32768}$, the Sum of the fecond will be $\frac{12393}{32763}$, and the Aggregate of thofe two Sums will be $\frac{31171}{37768}$, which will exprefs the Probability of the Play's ending in fifteen Games or fooner. This laft Fraction being fubtracted from Unity, there will remain $\frac{1597}{32708}$, which expreffes the Probability of the Play's continuing beyond fifteen Games: Wherefore 'tis 3117 I to 1597, or 39 to 2 nearly that one of the two equal Gamefters that fhall be pitched upon, thall in fifteen Games at fartheft, either win two Stakes of his Adverfary, or lofe three to him.
N. B. The Index of the Denominator in the laft Term of each Series, and the Index of the common Multiplicator prefixed to it being added together, muft either equal the number of Games given, or be lefs than it by Unity. Thus in the firft Series, the Index 12 of the Denominator of the laft Term, and the Index 2 of the common Multiplicator being added together, the Sum is 14 , which is lefs by Unity than the number of Games given. So likewife in the fecond Series, the Index 12 of the Denominator of the laft Term, and the Index 3 of the common Multiplicator being added together, the Sum is 15 , which precifely equals the number of Games given.
It is carefully to be obferved that thofe two Series taken together exprefs the Expectation of one and the fame perfon, and not of two different perfons; that is properly of a Spectator, who lays a wager
that the Play will be ended in a given number of Games. Yet in one Care, they may exprefs the Expectations of two different perfons: for Inftance, of the Gamefters themfelves, provided that both Series be continued infinitely; for in that Cafe, the firft Series infinitely continued will exprefs the Probability that the Gamefter A may fooner win two Stakes of B, than that he may lofe three to him : likewife the fecond Series infinitely continued will exprets the Probability that the Gamefter B may fooner win three Stakes of $A_{\text {, }}$ than lofe two to him. And it will be found, (when I come to treat of the Method of fumming up this fort of Series, whofe Terms have a perpetual recurrency of relation to a fixed number of preceding Terms) that the firf Series infinitely continued is to the fecond infinitely continued, in the proportion of $a a \times \overline{a a+a b}+b \bar{b}$ to $b^{3} \times$ a+b; that is in the Cafe of an Equality of Skill as 3 to 2, which is conformable to what I have faid in the $\mathrm{Ix}^{\text {th }}$ Problem.

Fourtbly, Any Term of thefe Series may be found independently from any of the preceding : for if a Wager be laid that A fhall either win a certain number of Stakes denominated by q, or that B fhall win a certain number of them denominated by p, and that the number of Games be expreffed by $q+d$; then I fay that the Coefficient of any Term in the firft Series anfwering to that number of Games will be
$+\frac{q}{1} \times \frac{q+d-1}{2} \times \frac{s+d-2}{3} \times \frac{q+d-3}{4}$, \&ic. continued to. fo many Multiplicators as there are Units in $\frac{1}{2} d$.
$-\frac{q+2 p}{1} \times \frac{q+d-1}{2} \times \frac{q+d-2}{3} \times \frac{q+d-3}{4}$, \&cc. continued to fo many Terms as there are Units in $\frac{1}{2} d-p$. $+\frac{3 q+2 p}{1} \times \frac{q+d-1}{2} \times \frac{q+d-2}{3} \times \frac{q+d-3}{4}, \& c$. continued to fo many Terms as there are Units in $\frac{1}{2} d-p-q$.
$-\frac{3 q+\Delta p}{1} \times \frac{q+d-1}{2} \times \frac{a+d-2}{3} \times \frac{q+d-3}{4}$, \&c. continued to fo. many Terms as there are Units in $\frac{1}{2} d-2 p-q$.
$+\frac{5 q+4 p}{1} \times \frac{q+d-1}{2} \times \frac{q+d-2}{3} \times \frac{q+d-3}{4}$, \&cc. continued to fo. many Terms as there are Units in $\frac{1}{2} d-2 p-2 q$.
$-\frac{5 q+6 p}{1} \times \frac{a+d-1}{2} \times \frac{q+d-2}{3} \times \frac{q+d-3}{4}$, \&xc. continued to fo many Terms as there are Units in $\frac{1}{2} d-3 p-2 q$.

$$
+\frac{7 q+5 p}{1}
$$

208 The Doctrine of Chances.
$+\frac{7 q+6 q}{1} \times \frac{q+d-1}{2} \times \frac{q+d+2}{3} \times \frac{q+d-j}{4}, \& \mathrm{c}$. continued to fo many Terms as there are Units in $\frac{1}{2} d-3 p-3 q$.
And fo on.
And the fame Law will hold for the other Series, calling $p+\delta$ the number of Games given, and changing q into p, and p into q, as alfo d into δ, ftill remembring that when d is an odd number, $d \rightarrow 1$ ought to be taken in the room of it, and the like for δ.

And the fame obfervation muft be made here as was made at the end of the LIX ${ }^{\text {th }}$ Probiem, viz. that if $\frac{1}{2} d$, or $\frac{1}{2} d-p$, or $\frac{1}{2} d-p-q$, or ${ }_{2}^{1} d-2 p-q$, or $\frac{1}{2} d-2 p-2 q$, \&cc. expreffing refpectively. the number of Multiplicators to be taken in each Line, are $=0$, then I ought to be taken for that Line, and alfo, that if $\frac{1}{2} d$, or $\frac{1}{2} d-p$, or $\frac{1}{2} d-p-q, s x$. are lefs than nothing, otherwife negative, then the Line to which they belong as well as all the following ought to be cancelled.

PROBLEM LXV.

If A and B , whofe proportion of Kill is fuppofed as a to b , play together: What is the Probability that one of them, juppofe A, may in a number of Games not exceeding a number given, win of B a certain number of Stakes? leaving it wholly indifferent whether B, before the expiration of thofe Games, may or may not bave been in a circumfance of winning the fame, or any other number of Stakes of A.

Solution.

Suppofing n to be the number of Stakes which A is to win of B, and $n-1-d$ the number of Games; let $a-b$ be raifed to the Power whofe Index is $n+d$; then if d be an odd number, take fo many Terms of that Power as there are Units in $\frac{d+1}{2}$; take alfo fo many of the Terms next following as have been taken already, but prefix to them in an inverted order, the Coefficients of the preceding Terms. But if d be an even number, take fo many Terms of the

The Doctrine of Chances.

faid Power as there are Units in $\frac{1}{2} d+1$; then take as many of the Terms next following as there are Units in $\frac{1}{2} d$, and prefix to them in an inverted order the Coefficients of the preceding Terms, omitting the laft of them; and thofe Terms taken all together will compofe the Numerator of a Fraction expreffing the Probability required, the Denominator of which Fraction ought to be $\overline{a+b}{ }^{n+d}$.

Example I.

Suppofing the number of Stakes, which A is to win, to be Three, and the given number of Games to be Ten; let $a+b$ be raifed to the tenth power, viz. $a^{10}+10 a^{9} b+45 a^{8} b b+120 a^{9} b^{3}+$ $210 a^{6} b^{4}+25^{2} a^{5} b^{5}+210 a^{4} b^{6}+120 a^{3} b^{7}+45 a a b^{8}+10 a b^{9}+b^{10}$. Then by reafon that $n=3$, and $n+d=10$, it follows that d is $=7$, and $\frac{d+1}{2}=4$. Wherefore let the Four firf Terms of the faid Power be taken, viz. $a^{10}+10 a^{9} b+45 a^{8} b b+120 a^{7} b^{3}$, and let the four Terms next following be taken likewife without regard to their Coefficients, then prefix to them in an inverted order, the Coefficients of the preceding Terms : thus the four Terms following with their new Coefficients will be $120 a^{6} b^{4}+45 a^{5} b^{5}+$ $10 a^{4} b^{6}+1 a^{3} b^{7}$. Then the Probability which A has of winning three Stakes of B in ten Games or fooner, will be expreffed by the following Fraction

```
\mp@subsup{a}{}{10}+10a9b+45\mp@subsup{a}{}{8}bb+120\mp@subsup{a}{}{7}\mp@subsup{b}{}{3}+12c\mp@subsup{a}{}{6}\mp@subsup{k}{}{4}+45\mp@subsup{a}{}{5}\mp@subsup{b}{}{5}+10\mp@subsup{a}{}{4}\mp@subsup{b}{}{6}+\mp@subsup{a}{}{3}\mp@subsup{b}{7}{\prime}
```

which in the Cafe of an Equality of Skill between A and B will be reduced to $\frac{352}{1024}$ or $\frac{11}{32}$.

Example II.

Suppofing the number of Stakes which A has to win to be Four, and the given number of Games to be Ten; let $a+-b$ be raifed to the tenth Power, and by reafon that n is $=4$, and $n-d=10$, it follows that d is $=6$, and $\frac{1}{2} d+1=4$; wherefore let the four firft Terms of the faid Power be taken, viz. $a^{\text {ro }}+10 a^{9} b+45 a^{8} b b$ +120a7 ${ }^{3}$; take alfo three of the Terms following, but prefix to them, in an inverted order, the Coefficients of the Terms already taken, omitting the laft of them; hence the three Terms following with their new Coefficients will be $45 a^{6} b^{4}-10 a^{5} b^{5}+1 a^{4} b^{6}$. Then
the Probability which A has of winning four Stakes of B in ten Games, or fooner, will be expreffed by the following Fraction

$$
\frac{a^{10}+10 a^{9} t+4.5 a^{8} b b+120 a^{7} b^{3}+45 a^{6} b^{4}+10 a^{5} b^{3}+1 a^{4} b^{6}}{a+b^{10}}
$$

which in the Cafe of an Equality of Skill between A and B will be reduced to $\frac{232}{102+}$ or $\frac{20}{128}$.

Another Solution.

Suppofing as before that n be the number of Stakes which A is to win, and that the number of Games be $n+d$, the Probability which A has of winning will be expreffed by the following Series $\frac{a^{n}}{a+b^{n}} \times \overline{1+\frac{n a b}{a+b^{2}}}+\frac{n \cdot n+3 \cdot a a b b}{1 \cdot 2 \cdot a+b b^{4}}+\frac{n \cdot n+4 \cdot n+5 \cdot a^{3} b^{b}}{1 \cdot n^{2} \cdot 3 \cdot a+b^{b}}$ $+\frac{n \cdot n+5 \cdot n+6 \cdot n+7 \cdot a^{4 b+}}{1 \cdot 2 \cdot 3 \cdot 4 \cdot \overline{a+b^{8}}}$, \&c. which Series ought to be continued to fo many Terms as there are Units in $\frac{1}{2} d+1$; always obferving to fubftitute d - I in the room of d in Cafe d be an odd number, or which is the fame thing, taking fo many Terms as there are Units in $\frac{d+1}{2}$.

Now fuppofing, as in the firft Example of the preceding Solution, that Three is the number of Stakes, and Ten the given number of Games, and alfo that there is an equality of Skill between A and B, the foregoing Series will become $\frac{1}{8} \times 1+\frac{3}{4}+\frac{9}{16}+\frac{28}{64}$ $=\frac{11}{3^{2}}$, as before.

Remark.

In the firf attempt that 1 had ever made towards folving the general Problem of the Duration of Play, which was in the Year 1708, I began with the Solution of this Lxv $^{\text {th }}$ Problem, well knowing that it might be a Foundation for what I farther wanted, fince which time, by a due repetition of it, I folved the main Problem: but as I found afterwards a nearer way to it, I barely publifhed in my firft Effay on thofe matters, what feemed to me moft fimple and elegant, ftill preferving this Problem by me in order to be publifhed when I fhould think it proper. Now in the year ${ }_{17} 13 \mathrm{Mr}$. de Monmort printed a Solution of it in a Book by him publifhed upon Chance, in which was alfo inferted a Solution of the fame by Mr. Nicolas Bernoulli; and as thofe two Solutions feemed
to me, at firft fight, to have fome affinity with what I had found before, 1 confidered them with very great attention; but the Solution of Mr. Nicolas Bernoulli being very much crouded with Symbols, and the verbal Explication of them too feanty, I own I did not underftand it thoroughly, which obliged me to confider Mr. de Monmort's Solution with very great attention: I found indeed that he was very plain, but to my great furprize I found him very erroneous; ftill in my Doctrine of Chances I printed that Solution, but rectified and afcribed it to Mr. de Monmort, without the leaft intimation of any alterations made by me; but as I had no thanks for fo doing, I refume my right, and now print it as my own: but to come to the Solution.

Let it be propored to find the number of Chances there are for A to win two Stakes of B, or for B to win three Stakes of A, in fifteen Games.

The number of Chances required is exprefled by two Branches of Series; all the Series of the firf Branch taken together exprefs the number of Chances there are for A to win two Stakes of B, exclufive of the number of Chances there are for B before that time, to win three Stakes of A. All the Series of the fecond Branch taken together exprefs the number of Chances there are for B to win three Stakes of A, exclufive of the number of Chances there are for A before that time to win two Stakes of B.

$$
\begin{gathered}
\text { Firg Branch of Series. } \\
a^{15} a^{14 b} a^{13} b_{2} a^{12} b^{3} a^{11} b^{4} a^{10} b 5 a^{9} b^{6} a^{8} b^{7} a^{77} b^{3} a^{5} b 9 a^{5} b^{10} a^{4 b^{11}} a^{32} b^{12} a^{2} b^{13} \\
1+15+105+455+1365+3003+5005+5005+3003+1365+455+105+15+1 \\
-1-15-105-455-455-105-15-1 \\
+15+15+15+1
\end{gathered}
$$

Second Branch of Series.

$$
\begin{gathered}
b^{15} b^{14 a} b^{13} a^{2} b^{11} a^{4} b^{10} a^{5} b 9 a^{6} b^{8} a^{7} b^{7} a^{8} b^{6} a^{9} b^{55} a^{10} b 4 a^{11} b 3 a^{12} b^{2} a^{13} \\
1+15+105+455+1365+3003+5005+3003+1365+455+105+15+1
\end{gathered}
$$

The literal Quantities which are commonly annexed to the numerical ones, are here written on the top of them; which is done, to the end that each Series being contained in one Line, the dependency they have upon one another, may thereby be made more confpicuous.

The firt Series of the firt Branch expreffes the number of Chances there are for A to win two Stakes of B, including the number of Chances there are for B before, or at the Expiration of the fifteen Games, to be in a Circumftance of winning three Stakes of A; which number of Chances may be deduced from the $\mathrm{Lxv}^{\text {th }}$ Problem.

The fecond Series of the firf Branch is a part of the firft, and expreffes the number of Chances there are for B to win three Stakes of A, out of the number of Chances there are for A, in the firt Series to win two Stakes of B. It is to be obferved about this Series, Firft, that the Chances of B expreffed by it are not reftrained to happen in any order, that is, either before or after A has won two Stakes of B. Secondly, that the literal products belonging to it are the fame with thofe of the correfponding Terms of the firft Series. Thirdly, that it begins and ends at an Interval from the firf and laft Terms of the firft Series equal to the number of Stakes which B is to win. Fourtbly, that the numbers belonging to it are the numbers of the firft Series repeated in order, and continued to one half of its Terms; after which thofe numbers return in an inverted order to the end of that Series: which is to be underftood in cafe the number of its Terms fhould happen to be even; for if it fhould happen to be odd, then that order is to be continued to the greateft half, after which the return is made by omitting the laft number. Fifthly, that all the Terms of it are affected with the fign minus.

The Third Series is part of the fecond, and expreffes the number of Chances there are for A to win two Stakes of B, out of the number of Chances there are in the fecond Series for B to win three Stakes of A; with this difference, that it begins and ends at an Interval from the firt and laft Terms of the fecond Series, equal to the number of Stakes which A is to win; and that the Terms of it are all pofitive.

It is to be obferved, that let the number of thofe Series be what it will, the Interval between the beginning of the firft and the beginning of the fecond, is to be equal to the number of Stakes which B is to win; and that the Interval between the beginning of the fecond and the beginning of the third, is to be equal to the number of Stakes which A is to win; and that thefe Intervals recur alternately in the fame order. It is to be obferved likewife that all thefe Series are alternately pofitive and negative.

All the Obfervations made upon the firf Branch of Series belonging alfo to the fecond, it would be needlefs to fay any thing more of them.

Now the Sum of all the Series of the firf Branch, being added to the Sum of all the Series of the fecond, the Aggregate of thefe Sums will be the Numerator of a Fraction expreffing the Probability of the Play's terminating in the given number of Games; of which the Denominator is the Binomial $a+b$ raifed to a Power whofe Index is equal to that number of Games. Thus fuppofing that in the Cafe of this Problem both a and b are equal to Unity, the Sum of the Series in the firft Branch will be 18778 , the Sum of the Series in the fecond will be 12393, and the Aggregate of both 3^{1171}; and the Fifteenth Power of 2 being 32768, it follows that the Probability of the Play's terminating in Fifteen Games will be $\frac{3117 \mathrm{r}}{3^{27} 788}$, which being fubtracted from Unity, the remainder will be $\frac{1597}{32763}$: From whence we may conclude that it is a Wager of 31171 to 1597 , that either A in Fifteen Games fhall win two Stakes of B, or B win three Stakes of A : which is conformable to what was found in the Lxiv ${ }^{\text {th }}$ Problem.

P R O B L E M LXVI.

To find what Probability there is that in a given number of Games A may be winner of a certain number q of Stakes, and at fome other time B may likerwife be winner of the number p of Stakes, fo that both circumfances may bappen.

Solution.
Find by our Lxv $^{\text {th }}$ Problem the Probability which A has of winning, without any limitation, the number q of Stakes: find alfo by the Lxinid Problem the Probability which A has of winning that number of Stakes before B may happen to win the number p; then from the firft Probability fubtracting the fecond, the remainder will exprefs the Probability there is that both A and B may be in a circumftance of winning, but B before A. In the like manner, from the Probability which B has of winning without limitation, fubtracting the Probability which he has of winning before A, the remainder will exprefs the Probability there is that both A and B may be in a circumftance of winning, but A before B : wherefore adding thefe two remainders together, their Sum will exprefs the Probability required.

Thus if it were required to find what Probability there is, that in Ten Games A may win Two Stakes of B, and that at fome other time B may win Three:
The firft Scries will be found to be

The fecond Series will be

The difference of there Series being $\frac{a a}{a+b^{2}} \times \overline{\frac{a^{3} b^{3}}{\overline{a+1}}+\frac{8 a^{6} 54^{-}}{a+a^{8}}}$ expreffes the firt part of the Probability required, which in the Cafe of an equality of Skill between the Gamefters would be reduced to $\frac{3}{256}$.

The third Series is as follows,

$$
\frac{b^{3}}{a+b^{3}} \times 1+\frac{3 a b}{a+b^{2}}+\frac{9 a a b b}{a+b+}+\frac{28 a b^{6}}{a+b^{6}}
$$

The fourth Series is

$$
\frac{b^{3}}{a+b_{3}} \times \overline{1+\frac{3 a b}{a+b^{2}}+\frac{\text { 8aabb }}{a+b)^{4}}+\frac{21 a^{333}}{a+b^{6}}}
$$

The difference of thefe two Series being $\frac{b^{3}}{a+b^{3}} \times \frac{\overline{a a b b}}{a+\theta^{4}}+\frac{7^{3} b^{3}}{a+b^{i o}}$ expreffes the fecond part of the Probability required, which in the Cafe of an equality of Skill would be reduced to $\frac{11}{512}$. Wherefore the Probability required would in this Cafe be $\frac{3}{256}+\frac{11}{512}=\frac{17}{512}$. Whence it follows, that it is a Wager of 495 to 17 , or 29 to I very near, that in Ten Games A and B will not both be in a circumftance of winning, viz, A the number q and B the number p of Stakes. But if by the conditions of the Problem, it were left indifferent whether A or B fhould win the two Stakes or the three, then the Probability required would be increafed, and become as follows; viz.
which, in the Cafe of an equality of Skill between the Gamefters, would be double to what it was before.

P R O B L E M LXVII.

To find what Probability there is, that in a given number of Games A may win the number q of Stakes; with this fartber condition, that B during that whole number of Games may never bave been winner of the number p of Stakes.

> SOLUTION.

From the Probability which A has of winning without any limitation the number q of Stakes, fubtract the Probability there is that both A and B may be winners, viz. A of the number q, and B of the number p of Stakes, and there will remain the Probability required.

But if the conditions of the Problem were extended to this alternative, viz. that either A fhould win the number q of Stakes, and B be excluded the wiming of the number p; or that B fhould win the number p of Stakes, and A be excluded the winning of the number q, the Probability that either the one or the other of thefe two Cafes may happen will eafily be deduced from what we have faid.

The Rules hitherto given for the Solution of Problems relating to the Duration of Play are eafily practicable, if the number of Games given is but fmall; but if that number is large, the work will be very tedious, and fometimes fwell to that degree as to be in fome manter impracticable : to remedy which inconveniency, I Shall here give an Extract of a paper by me produced before the Royal Society, wherein was contained a Method of folving very expeditioully the chief Problems relating to that matter, by the help. of a Table of Sines, of which I had before given a hint in the firft Edition of my Doctrine of Chances, pag. 149, and 150 .

PROBLEM LXVIII.

To folve by a Metbod different from any of the preceding, the Problem Lix, when a is to b in a ratio of Equality.

Solution.

Let n be the number of Games given, and p the number of Stakes; let Q reprefent 90 degrees of a Circle whofe Radius is equal to Unity; let C, D, E, F, \&cc. be the Sines of the Arcs $\frac{Q}{p}, \frac{3 Q}{p}, \frac{5 Q}{p}, \frac{7 Q}{p}$, Ecc. till the Quadrant be exhaufted; let alfo, $c, d, e, f, \& c$. be the Co-fines of thofe Arcs: then if the difference between n and p be an even number, the Probability of the Play's not ending in the given number of Games will be reprefented by the Series

$$
\frac{2}{p} \times \frac{c^{n+1}}{C}-\frac{d^{n+1}}{D}+\frac{e^{n+1}}{E}-\frac{f^{n+1}}{F}, \& c c .
$$

of which Series very few Terms will be fufficient for a very near approximation. But if the difference between n and p be odd, then the Probabity required will be $\frac{2}{p} \times \frac{c^{n}}{C}-\frac{d^{n}}{D}+\frac{e^{n}}{E}-\frac{f^{n}}{F}$ \&c.

In working by Logarithms, you are perpetually to fubtract, from the Logarithm of every Term, the Product of 10 into the number n, in cafe the number $n-p$ be even; but in cafe it be odd, you are to fubtract the Product of 10 into $n-1$, and if the Subtraction cannot be made without making the remainder negative, add 10,20 , or $30, \& \mathrm{cc}$. and make fuch proper allowances for thofe additions as thofe who are converfant with Logarithms know how to make.

To apply this to fome particular cafes, let it be required to find the Probability of Twelve Stakes being not loft in 108 Games.

Here becaufe the difference between 108 and 12 is 96 , I take the firft form, thus

The Arcs $\frac{Q}{p}, \frac{3 Q}{p}, \frac{5 Q}{p}, \frac{7 Q}{p}, \frac{9 Q}{p}, \frac{11 Q}{p}, \frac{13 Q}{p}, \& c$. being refpectively $7^{d},-30^{\prime}, 22^{d}, 30^{\prime}, 37^{d}-30^{\prime}, 52^{d}-30^{\prime}$, $67^{d}-30^{\prime}, 82^{d}-30^{\prime}, 97^{d}-30^{\prime}$, \&rc. I take only the fix firft, as not exceeding 90d.

Now the Logarithm of the Co-fine of $7^{d}-30^{\prime}$ being 9.9962686, I multiply it by $n+1$, that is in this Cafe by 109 , and the product will be 1089.5932774 , which is the Logarithm of the Numerator of the firf Fraction $\frac{c^{n+1}}{c}$.

From that Logarithm, I fubtract the Logarithm of the Sine of 7^{d} - 30^{\prime} here reprefented by C, which being 9.1156977 , the remainder will be 1080.4775797 , out of which rejecting 1080 product of 10 by the given number of Games 108, and taking only 0.4775797 the number anfwering will be 3.00327 , which being multiplied by the common Multiplicator $\frac{2}{p}$, that is in this Cafe by $\frac{2}{12}$ or $\frac{1}{6}$, the product will be 0.50053 , which Term alone determines nearly the Probability required.
For if we intend to make a Correction by means of the fecond Term $\frac{d^{n+1}}{\nu}$, we Chall find the Logarithm of $\frac{d^{n+1}}{D}$ to be 1076.6692280 to which adding 10 , and afterwards fubtracting 1080 , the remainder will be 6.6692280 , to which anfwers 0.0004669 , of which the $6^{\text {th }}$ part is 0.000077^{8}, which being almoft nothing may be fafely rejected. And whenever it happens that n is a large number in refpect to p, the firft Term alone of thefe Series will exceeding near determine the Probability required.

Let it now be required to find the Probability of 45 Stakes being not loft on either fide in 1519 Games.

The Arcs $\frac{Q}{p}, \frac{3 Q}{p}, \frac{5 Q}{p}$, \&c. being refpectively $2^{d}, 61,10^{d}$, \&c. I take, ${ }^{\circ} 1^{\circ}$, the Logarithm of the Co-fine of 2^{d} which is 9.9997354 , which being multiplied by $n+\mathrm{I}$, that is in this Cafe by 1520 , the product will be 15199.5988080 , out of which fubtracting the Logarithm of the Sine of 2^{d}, viz. 8.542819^{2}, the remainder. will be 15191.0559888 , out of which rejecting 15190 , the number anfwering will be 11.3759 , which being multiplied by $\frac{2}{p}$, that is, in this Cafe by $\frac{2}{45}$, the product will be .50559 . which nearly determines the Probability required.

Now if we want a Correction by means of the fecond Term, we fhall find $\frac{d^{n+1}}{D}=.00002081$, which Term being fo very inconfiderable may be entirely rejected, and much more all the following.

Confidering therefore that when the Arc $\frac{0}{P}$ is fmall, the firft Term alone is fufficient for a near approximation, it will not be amifs to inquire what muft be the number of Games that fhall make it an equal Probability of the Play's being ended in that number of Games; which to do,

Suppofe $\frac{c^{n+1}}{c} \times \frac{2}{p}=\frac{1}{2}$, hence $4 c^{+1}=C p$, then fuppoling p a large number, whereby the number n muft be ftill much larger, we may barely take for our Equation $4 c^{\eta}=p C$, then taking the Logarithms, we thall have Log. $4+n \log . c=\log . C$ - - Log. p, let the magnitude of the $\operatorname{Arc} \frac{Q}{p}$ be fuppofed $=z$; now fince the number p has been fuppofed very large, it follows that the Arc z muft be very fmall; wherefore the Sine of that Arc will alfo be nearly $=z$, and its Co-fine $1-\frac{1}{2} z z$ nearly, of which Co-fine the Logarithm will be $-\frac{1}{2} z z$ nearly; we have therefore the Equation Log. $4-\frac{1}{2} n z w=\log \cdot p+\log . z$; let now the Magnitude of an Arc of 90^{1}, to a Radius equal to Unity, be $=\mathrm{M}$, hence we fhall have $\frac{M}{p}=z$, and Log. $z=\log . M-\log . p$, wherefore the Equation will at laft be changed into this, Log. 4 $-\frac{\frac{1}{2} n \mathrm{MM}}{p p}=\log . \mathrm{M}$, and therefore $n=\frac{2 \log .4-2 \log . \mathrm{M}}{M M} \times p p$, but $\frac{{ }_{2 \text { log. } 4-2 \text { log. } M}^{M M}}{M M}=0.756$ nearly, and therefore $n=0.756 p p$.
N. B. The Logarithms here made ufe of are fuppofed to be Hy perbolic Logarithms, of which I hear a Table will foon be publifhed.

Mr. de Monmort in the fecond Edition of his Tract, Des jeux de Hazard, tells us that he found that if p denoted an odd number of Stakes to be won or loft, making $\frac{p+1}{2}=\int$, that then Quantity $3 \int f-3 \int+1$ would denote a number of Games wherein there would be more than an equal Probability of the Play's being ended; but at the fame time he owns, that he has not been able to find a Rule like it for an even number of Stakes.

Whereupon I fhall obferve, firft, that his Expreffion may be reduced to $\frac{3}{4} p p+\frac{1}{4}$. Which tho' near the Truth in fmall numbers, yet is very defective in large ones, for it may be proved that the number of Games found by his Expreffion, far from being above what is requifite, is really below it. Secondly, that his Rule does not err more in an even number of Stakes than in an odd one; but that Rule being founded upon an induction gathered from the Solution of fome of the fimpleft Cafes of this Problem, it is no wonder that he reftrained it to the odd Cafes, he happening to be miftaken in determining:
mining the number of Games requifite to make it an even Wager that twelve Stakes would be won or loft before or at the expiration of thofe Games, which he finds by a very laborious calculation to have been 122; in which however he was afterwards rectified by Mr. Nicolas Bernoulli, who informed him that he had found by his own Calculation that the number of Games requifite for that purpofe was above 108, and below 110 ; and this is exactly conformable to our Rule, for multiplying $p p=144$ by 0.756 , the Product will be 108.864 .

For a Proof that his Rule falls fhort of the Truth, let us fuppofe $p=45$, then \int will be $=23$, and $3 \iint-3 \int+1$ will be $=1519$, let us therefore find the Probability of the Play's terminating in that number of Games; but we have found by this Lxvintit Problem, that the Probability of the Play's not terminating in that number of Games is $0.5 \circ 559$; and therefore the Probability of its terminating within them is 0.49441 ; which being lefs than $\frac{1}{2}$, fhews 'tis not more than an equal Wager that the Play would be terminated in 1519 Games.

But farther, let us fee what number of Games would be neceflary for the equal wager, then multiplying 2025 fquare of 45 by 0.756 , the Product will be 1530.9 ; which thews that about 1531 Games are requifite for it.

PR O B L E M LXIX.

The fame things being given as in the preceding Problem, except that now the ratio of a to b is fuppofed of inequality, to folve the fame by the Sines of Arcs.

Solution.

Let n reprefent the number of Games given, p the number of Stakes to be won or loft on cither fide, let alfo A be the Semicircumference of a Circle whofe Radius is equal to Unity : let C, $D, E, F, \& c$. be the Sines of the Arcs $\frac{A}{p}, \frac{z A-}{p}, \frac{\frac{A}{p}}{p}, \frac{7 \mathrm{~A}}{P}, \&<c$. till the Semi-circumference be exhaufted; let alfo c, d, c, f, \&cc. be the refpective verfed Sines of thofe Arcs; let $\frac{a^{n}+b^{n}}{\overline{a+b}}$ be made $=\mathrm{L}$,

$e, 2 r:: \mathrm{EE}, \int$, \&c. then the Probability of the Play not ending in n Games will be expreffed by the following Series
$\frac{\mathrm{C}}{2 r c+t} \times m^{\frac{1}{2} n}-\frac{\mathrm{n}}{2 r d+t} \times q^{\frac{1}{2} n}+\frac{\mathrm{E}}{2 \mathrm{~L}^{2 r+t}} \times \int^{\frac{1}{2} n, \& c .}$
the whole to be multiplied by

$$
\frac{2 \mathrm{~L}}{p \times r^{\frac{1}{2} p-1}}
$$

As there are but few Tables of Sines, wherein the Logarithms of the verfed Sines are to be found, it will be eafy to remedy that inconveniency, by adding the Logarithm of 2 to the excefs of twice the tabular Logarithm of the Sine of half the given Arc above 10 ; for that Sum will give the Logarithm of the verfed Sine of the whole Arc.

It will be eafily perceived that inftead of referring the Arcs to the Divifion of the Semi-circumference, we might have referred them to the Divifion of the Quadrant, as in the Cafe of the preceding Problem.

Of the Summation of recurring. Series.

The Reader may have perceived that the Solution of feveral Problems relating to Chance depends upon the Summation of Series; I have, as occafion has offered, given the Method of fumming them up; but as there are others that may occur, I think it neceffary to give a fummary View of what is moft requifite to be known in this matter ; defiring the Reader to excufe me, if I do not give the Demonftrations, which would fwell this Tract too much; efpecially confidering that I have already given them in my Mifcellanea Analytica.

I call that a recurring Series which is fo conftituted, that having taken at pleafure any number of its Terms, each following Term fhall be related to the fame number of preceding Terms, according to a conftant law of Relation, fuch as the following Series

A

in which the Terms being refpectively reprefented by the Capitals $A, B, C, D, \& c$. we fhall have

$$
\begin{aligned}
& \mathrm{D}=3 \mathrm{C} x-2 \mathrm{~B} x x+5 \mathrm{~A} x^{3} \\
& \mathrm{E}=3 \mathrm{D} x-2 \mathrm{C} x x+5 \mathrm{~B} x^{3} \\
& \mathrm{~F}=3 \mathrm{E} x-2 \mathrm{D} x x+{ }_{5} \mathrm{C} x^{3} \\
& \dot{\alpha} \mathrm{c} .
\end{aligned}
$$

Now the Quantities $3 x-2 x x+5 x^{3}$, taken together and connected with their proper Signs, is what I call the Index, or the Scale of Relation ; and fometimes the bare Coefficients $3-2+5$ are called the Scale of Relation.
Proposition I.

If there be a recurring Series $a+b x+c x x+d x^{3}+e x^{4}, 8 c$. of which the Scale of Relation be $f x-g x x$; the Sum of that Series. continued in infinitum will be

$$
\begin{aligned}
& a+b x \\
& \frac{-f a x}{1-f x+g x x} \\
& \text { PROPOSITION II. }
\end{aligned}
$$

Suppofing that in the Series $a+b x+c x x+d x^{3}+e x^{4}, \& c$. the Law of Relation be $f x-g x x+b x^{3}$; the Sum of that Series continued in infinitum will be

$$
\begin{gathered}
a+b x+c x x \\
-f a x-f b x x \\
1-f x+g a x x-b x^{3}
\end{gathered}
$$

Proposition III.

Suppofing that in the Series, $a+b x+c x x$, \&cc. the Law of Relation be $f x-g x x+b x^{3}-k x^{4}$, the Sum of the Series will be

$$
\begin{gathered}
\begin{array}{c}
a+b x+c x x+d x^{3} \\
-f a x-f b x x-f c x^{3} \\
+g a x x+g b x^{3} \\
-b a x^{3}
\end{array} \\
1-f x+g x x-b x^{3}+k x^{4}
\end{gathered}
$$

As the Regularity of thofe Sums is confpicuous, it would be needlefs to carry them any farther.

Still it is convenient to know that the Relation being given, it willbe eafy to obtain the Sum by obferving this general Rule.
1°, Take as many Terms of the Series as there are parts in the Scale of Relation.
2°, Subtract the Scale of Relation from Unity, and let the remainder be called the Differential Scale.

$$
3^{\circ}, \text { Mul' }
$$

3°, Multiply thofe Terms which have been taken in the Series by the Differential Scale, beginning at Unity, and fo proceeding orderly, remembering to leave out what would naturally be extended beyond the laft of the Terms taken.

Then the Product will be the Numerator of a Fraction expreffing the Sum, of which the Denominator will be the Differential Scale.

Thus to form the preceding Theorem,

$$
\text { Multiply } a+b x+c x x+d x^{3}
$$

by $\quad 1-f x+g x x-b x^{3} \ldots$
and beginning from Unity, we fhall have

$$
\begin{array}{r}
a+b x+c x x+d x^{3} \\
-f a x-f b x x-f x^{3} \ldots \\
+g a x x+g b x^{3} \ldots \\
-b a x^{3} \ldots
\end{array}
$$

omitting the fuperfluous Terms, and thus will the Numerator be formed; but the Denominator will be the Differential Scale, viz. $1-f x+g x x-h x^{3}+k x^{4}$.

Corollary.

If the firft Terms of the Series are not taken at pleafure, but begin from the fecond Term to follow the Law of Relation, in fo much that

$$
\begin{array}{ll}
b \text { hall be } & =f_{a} \\
c & =f_{b}-g a \\
d & =f c-g b+b a \\
\& c . & f o r
\end{array}
$$

then the Fraction expreffing the Sum of the Series will have barely the firft Term of the Series for its Numerator.
Proposition IV.

If a Series is fo conftituted, as that the laft Differences of the Coefficients of the Terms whereof it is compofed be all equal to nothing, the Law of the Relation will be found in the Binomial $\overline{1-x} n, n$ denoting the rank of thofe laft Differences; thus fuppofing the Series

whereof the Coefficients are,

The Doctrine of Chances.

223

I fay that the Relation of the Terms will be found in the Binomial $I_{1}-x{ }^{4}$, which being expanded will be $1-4 x+6 x x-4 x^{3}+x^{4}$ and is the Differential Scale, and therefore the Scale properly fo called will be $4 x-6 x x+4 x^{3}-x^{4}$; thus, in the foregoing Series, the Term

$$
\mathrm{G}=4 \mathrm{~F} x-6 \mathrm{E} x x+4 \mathrm{D} x^{3}-{ }_{1} \mathrm{C} x^{4} .
$$

Corollary.

The Sums of thofe infinite Series which begin at Unity, and have their Coefficients the figurate numbers of any order, are always expreffible by the Fraction $\frac{1}{1-x^{p} p}$, wherein p denotes the rank or order which thofe figurative numbers obtain; for Inflance if we take the Series $1+1 x+1 x x+1 x^{3}+1 x^{4}+1 x^{5}+1 x^{6}$, \&c. which is a geometric Progreffion, and whofe Coefficients are the numbers of the firft order, the Sum will be $\frac{1}{1-x}$, and if we take the Series $1+2 x+3 x x+4 x^{3}+5 x^{4}+6 x^{5}+7 x^{6}$, \&c. whofe Coefficients: compofe the numbers of the fecond order, the Sum will be $\frac{1}{1-x^{2}}$; and again, if we take the Series $1+3 x+6 x x+10 x^{3}+15 x^{4}$, \&c. whofe Coefficients are the numbers of the third order, otherwife called Triangular numbers, the Sum will be $\frac{1}{1-x^{3}}$.

Proposition V.

The Sum of any finite number of Terms of a recurring Series$a+b x+c x x+d x^{3}+e x^{4}$, \&cc. is always to be obtained.
Thus fuppofing the Scale of Relation to be $f x-g x x$; n the number of Terms whofe Sum is required; and $\alpha x^{2}+\beta x^{3}+1$ the two Terms which would next follow the laft of the given Terms, if: the Series was continued; then the Sum will be

$$
\begin{aligned}
& a+b x-x^{n} \times \alpha-\beta x \\
& \frac{-f a x-f a x}{1-f x+g x x}
\end{aligned}
$$

But if the Scale of Relation be $f x-g x x+b x^{3}, n$ the number of Terms given, and $\alpha x^{n}+\beta x^{n+1}+\gamma x^{n+2}$, the three Terms that would next follow the laft of the given Terms, then the Sum will be

The continuation of which being obvious, thofe Theorems need not be carried any farther.

But as there is a particular elegancy for the Sums of a finite number of Terms in thote Series whofe Coefficients are figurate numbers beginning at Unity, I fhall fet down the Canon for thofe Sums.

Let n denote the number of Terms whofe Sum is to be found, and p the rank or order which thofe figurate numbers obtain, then the Sum will be

$$
\begin{aligned}
& \frac{1-x^{n}}{1-x p^{p}}-\frac{n x^{n}}{1-x x^{p-1}}-\frac{n \cdot n+1 \cdot x^{n}}{1 \cdot 2 \cdot \overline{1-x} p^{p-2}} \\
& -\frac{n \cdot n}{1 \cdot 2 \cdot 1 \cdot n \cdot \frac{n+2 \cdot x^{n}}{1-x} p-3}-\frac{n \cdot n+1 \cdot n+2 \cdot n+3}{1 \cdot 2 \cdot 3 \cdot{ }^{4} \cdot 1-x^{\prime} p-4} \text {, \& c }
\end{aligned}
$$

which is to be continued till the number of Terms be $=p$.
Thus fuppofing that the Sum of twelve Terms of the Series, $1+3^{x}+6 x x+10 x^{3}+15 x^{4}$, suc. were demanded, that Sum will be

$$
\frac{1-x^{12}}{1-x)^{3}}-\frac{12 x^{12}}{1 \cdot 2 \cdot 1-x^{4}}-\frac{12 \cdot 13 x^{x^{12}}}{1 \cdot 2 \cdot 3 \cdot 1-x} .
$$

Proposition VI.

In a recurring Series, any Term may be obtained whofe place is affigned.

It is very plain, from what we have faid, that after having taken fo many Terms of the Series as there is in the Scale of Relation, the Series may be protracted till it reach the place affigned ; however if that place be very diftant from the beginning of the Series, the continuation of thofe Terms may prove laborious, efpecially if there be many parts in the Scale.

But there being frequent Cafes wherein that inconveniency may be avoided, it will be proper to fhew by what Rule this may be known; and then to thew how we are to proceed.

The Rule"will be to take the Differential Scale, and to fuppofe it $=0$, then if the roots of that fuppofed Equation be all real, and unequal, the thing may be effected as follows. Let the Series be reprefented by
and 1° if $f r$ - $g r r$ be the Scale of Relation, and confequently $1-f r$ $+g r r$ the differential Scale, then having made $\mathrm{x}-f r+g r r=0$; multipiy the Terms of that Scale refpectively by $x x, x, 1$, fo as to have $x x$ - frx $+g r r=0$, let m and p be the two roots of that Equation, then having made $\mathrm{A}=\frac{b r-p a}{m-p}$ and $\mathrm{B}=\frac{b r-m a}{p-m}$, and fuppofing l to be the interval between the firt Term and the place affigned, that Term will be $\mathrm{A} m^{l}+\mathrm{B} p^{l}$.

Secondly, If the Scale of Relation be $f r-g r r+b r^{3}$, make $1-f r+g r r-h r 3=0$, the Terms of which Equation being multiplied refpectively by $x^{3}, x x, x, 1$, we thall have the new Equation $x^{3}-f r x x+g r r x-b r^{3}=0$, let m, p, q be the roots of that Equation, then having made $\mathrm{A}=\frac{\operatorname{crr}-\overline{p+q} \times b r+p q a}{\overline{m-p} \times \overline{m-q}}$, $\mathrm{B}=\frac{c r-\overline{m+q} \times b r+m q}{\overline{p-m} \times \overline{p-q}}, \mathrm{C}=\frac{c r r-\overline{p+m} \times b r+m q}{\frac{\bar{p}}{\bar{q}-m \times \bar{q}-p}} ;$
And fuppofing as before l to be the Interval between the firft Term and the Term whofe place is affigned, that Term will be $\mathrm{A} m^{l}+$ $\mathrm{B} p^{\prime}+\mathrm{C} q^{\prime}$.

Thirdly, If the Scale of Relation be $f r-g r r+b r{ }^{3}-k r^{4}$ make $1-f r+g r r-b r^{3}+k r^{4}=0$, and multiply its Terms refpectively by $x^{4}, x^{3}, x x, x, \mathrm{I}$, fo as to have the new Equation $x^{4}-f r x^{3}+g r r x^{2}-b r^{3} x+k r^{4}=0$, let m, p, q, f, be roots of that Equation, then having made

$$
\begin{aligned}
& \mathrm{A}=\frac{d r 3-\overline{p+q+j} \times c r+\overline{p q+p /+q} \times b r-p q \times a}{m-p \times \frac{m}{m-q} \times \frac{m-1}{m}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{D}=\frac{d r^{3}-\overline{m+p+q} \times c r r+\frac{m p+m q+p q}{} \times b r-m p q \times a}{\overline{S-m} \times \overline{f-p} \times \overline{J-q}}
\end{aligned}
$$

then, fill fuppofing l to be the Interval between the firft Term and the Term whofe place is affigned, that Term will be $\mathrm{A} m^{l}+\mathrm{B} p^{l}+$ $\mathrm{C}^{l}+\mathrm{D} f^{l}$.
Altho' one may by a narrow infpection perceive the Order of thofe Theorems, it will not be amifs to exprefs them in words at length.

General Rule.

Let the Roots $m, p, q, \int, \& c$. determined as above, be called reG g
fpectively,
fpectively, firft, fecond, third, fourth Root, \&c. let there be taken as many Terms of the Scries beginning from the firt, as there are parts in the Scale of Relation : then multiply in an inverted order, 1°, the laft of thefe Terms by Unity; 2°, the laft but one by the Sum of the Roots wanting the firft; 3°, the laft but two, by the Sum of the Products of the Roots taken two and two, excluding that product wherein the firft Root is concerned; 4°, the laft but three, by the Sum of the Products of the Roots taken three and three, ftill excluding that Product in which the firf Root is concerned, and fo on ; then all the feveral parts which are thus generated by Multiplication being connected together by Signs alternately pofitive and negative, will compofe the Numerator of that Fraction to which A is equal ; now the Numerator of that Fraction to which B is equal will be formed in the fame manner, excluding the fecond Root inftead of the firft, and fo on

As for the Denominators, they are formed in this manner: From the firft Root fubtract feverally all the others, and let all the remainders be multiplied together, and the Product will conftitute the Denominator of the Fraction to which A is equal; and in the fame manner, from the fecond Root fubtracting all the others; let all the remainders be multiplied together, and the Product will conftitute the Denominator of the Fraction to which B is equal, and fo on for the Reft.

Coroleary i.

If the Series in which a Term is required to be affigned, be the Quotient of Unity divided by the differential Scale $\mathrm{I}-\mathrm{fr}+\mathrm{grr}$ $b r^{3}+k r^{4}$, multiply the Terms of that Scale refpectively by x^{4}, $x^{3}, x^{2}, x, 1$, fo as to make the firf Index of x equal to the laft of r, then make the Product $x^{4}-f_{r} x^{3}+g r r x x-b r^{3} x+k r^{4}$ to be $=0$. Let as before m, p, q, f, be the Roots of that Equation, let alfn z be the number of thofe Roots, and l the Interval between the firft Term, and the Term required, then make

$$
\begin{aligned}
& \mathrm{A}=\frac{\frac{n^{z-1}}{m-p} \times \overline{m-q} \times \overline{m-s}}{}, \mathrm{~B}=\frac{p^{z-1}}{\overline{p-m} \times p-q \times p-f} \\
& \mathrm{C}=\frac{q^{z-1}}{\overline{q-m} \times \overline{q-p} \times q-f}, \mathrm{D}=\frac{f^{z-1}}{\overline{J-m} \times \overline{S-p} \times \overline{J-q}}
\end{aligned}
$$

and the Term required will be $\mathrm{A} m^{l}+\mathrm{B} p^{l}+\mathrm{C} q^{l}+\mathrm{D} q^{l}$; and the Sum of the Terms will be

The Doctrine of Chances.
$\mathrm{A} \times \frac{\overline{1-m^{l+1}}}{1-m}+\mathrm{B} \times \frac{\overline{1-p^{l+1}}}{1-p}+\mathrm{C} \times \frac{\overline{1-q^{l+1}}}{1-q}+\mathrm{D} \times \frac{\overline{1-\rho^{l+1}}}{1-5}$
It is to be obferved, that the Interval between the firft Term and the Term required is always meafured by the number of Terms wanting one, fo that having for Inftance the Terms, a, b, c, d, e, f, whereof a is the firft and f the Term required, the Interval between a and f is 5 , and the Number of all the Terms 6 .

Corollary 2.

If in the recurring Series $a+b r+c r r+d r^{3}+e r^{4}, \& c$. whereof the Differential Scale is fuppofed to be $1-f r+g r r-b r^{3}+$ $k r^{\dagger}$, we make $x^{4}-f x r^{3}+g r r x x-b r^{3} x+k r^{+}=0$, and that the Roots of that Equation be m, p, q, \int, and that it fo happen that fo many Terms of the Series $a+b r+c r r+d r^{3}+e r^{4}, \& c \mathrm{c}$. as there are Roots, be every one of them equal to Unity, then any Term of the Series may be obtained thus; let l be the Interval between the firft Term and the Term required, make
and the Term required will be $\mathrm{A} m^{l}+\mathrm{B} p^{l}+\mathrm{C} q^{l}+\mathrm{D} \int^{l}$.

Proposition VII.

If there be given a recurring Series whofe Scale of Relation is fr - grr, and out of that Series be compofed two other Series, whereof the firft fhall contain all the Terms of the Series given which are pofited in an odd place, and the fecond fhall contain all the Terms that are pofited in even place; then the Scale of Relation in each of thefe two new Series may be obtained as follows :

Take the differential Scale 1 - $f r+g r r$, out of which compofe the Equation $x x-f r x+g r=0$; then making $x x=z$, expunge the Quantity x, whereby the Equation will become z: fr $\sqrt{ } z+$ $g r r=0$, or $z+g r r=f r \sqrt{ } z$; and fquaring both parts, to take away the Radicality, we fhall have the new Equation $z z+2 g r r z$ $+g g r^{4}=f f r r z$, or $z z+2 g r r z+g g r^{4}=0$; and dividing its
-ffrrz

Terms refpectively by $z z, z, 1$, we fhall have a new differential Scale for each of the two new Series into which the Series given was divided, which will be $1+2 g r r+g g r^{4}$: and this being ob-

228 The Doctrine of Chances.
tained, it is plain from our firf Propogition, that each of the two new Series may be fummed up.

But if the Scale of Relation be extended to three Terms, fuch as the Scale $f r-g r r+b r^{3}$, then the differential Scale for each of the two Series into which the Series given may be fuppofed to be divided, will be 1 -ffrr - $2 f b r^{4}-b b r^{6}$, whereby it ap-

$$
+2 g r r+g g r^{4}
$$

pears that each of the two new Series may be fummed up.
If inftead of dividing the Series given into two Series, we divide it into three, whereof the firf fhall be compofed of the $1^{\text {nt }}, 4^{\text {th }}, 7^{\text {th }}, 10^{\text {th }}, \& \mathrm{c}$. Terms; the fecond of the $2^{\text {d }}, 5^{\text {th }}, 8^{\text {th }}, 11^{\text {th }}$, \&x. Terms; the third of the $3^{\mathrm{d}}, 6^{\text {th }}, 9^{\text {th }}, 12^{\text {th }}, 8 \mathrm{c}$. Terms; and that the Scale of Relation be fuppofed $f r$ - grr; then taking the differential Scale 1 - fr $+g r r$, and having out of it formed the Equation $x x-$ $f r x+g r r=0$, fuppofe $x^{3}=z$; let now x be expunged, and the Equation will be changed into this $z z+3 f g r^{3} z+g^{3} r^{6}=0$,

$$
\text { - } f^{3} r^{3} z
$$

of which the Terms being divided refpectively by $z z, z, 1$, we fhall have a differential Scale $1-f^{3} r^{3}+g^{3} r^{6}$, which will ferve $+3 f r^{3}$
for every one of the three Series into which the Series given is divided; and therefore every one of thofe three Series may be fummed up, by help of the two firft Terms of each.

If the Scale of Relation be compofed of never fo many parts, ftill if the Series given be to be divided into three other Series; from the fuppofition of x^{3} being made $=z$, will be derived a Scale of Relation for the three parts into which the Series given is to be divided.

But if the Series given was to be divided into $4,5,6,7,8 x$ c. Series given, fuppofe accordingly $x^{4}=z, x^{5}=z, x^{6}=z, x^{7}=z$, $\& \mathrm{c}$. and x being expunged by the common Rules of Algebra, the Scale of Relation will be obtained for every one of the Series into which the Series given is to be divided.

Proposition VIII.

If there be given two Series, each having a particular Scale of Relation, and that the correfponding Terms of both Series be added together, fo as to compofe a third Series, the differential Scale for this third Series will be obtained as follows.

The Doctrine of Chances.

Let 1 - fr $+g r r$ be the differential Scale of the firft, and 1 - $m r+p r r$, the differential Scale of the fecond; let thofe two Scales be multiplied together, and the Product $1-\overline{m+f} \times r$ $\frac{1}{+p+g+m f} \times r r-m g+p f \times r^{3}+p g \times r^{4}$, will. exprefs the differential Scale of the Series refulting from the addition of the other two.

And the fame Rule will hold, if one Series be fubtracted from the other.

> Proposition IX.

If there be given two recurring Series, and that the correfponding Terms of thofe two Series be multiplied together, the differential Scale of the Series refulting from the Multiplication of the other two may be found as follows.

Suppofe I - $f r+g r r$ to be the differential Scale of the firft, and 1 - $m a+p a a$ the differential Scale of the fecond, fo that the firt Series fhall proceed by the powers of r, and the fecond by the powers of a; imagine thofe two differential Scales to be Equations equal to nothing, and both r and a to be indeterminate quantities; make $a r=z$, and now by means of the three Equations, 1 - $f r$ $+g r r=0,1-m a+p a a=0, a r=z$, let both a and r be expunged, and the Equation refulting from that Operation will be

$$
\begin{aligned}
1-f m z & +f f p z z-f g m p z^{3}+g g p p z^{4}=0 \\
& +m m g z z \\
& -2 g p z z \\
\text { or } 1-f m a r & +f f p a^{2} r^{2}-f g m p a^{3} r^{3}+g g p p a^{4} r^{4}=0 \\
& +m m g a^{2} r^{2} \\
& -2 g p a^{2} r^{2}
\end{aligned}
$$

by fubftituting $a r$ in the room of z; and the Terms of that Equation, without any regard to their being made $=0$, which was purely a fiction, will exprefs the differential Scale required: and in the fame manner may we proceed in all other more compound Cafes.

But it is very obfervable, that if one of the differential Scales be the Binomial $\mathrm{I}-a$ raifed to any Power, it will be fufficient to raife the other differential Scale to that Power, only fubftituting ar for r, or leaving the Powers of r as they are, if a be reftrained to Unity ; and that Power of the other differential Scale will conftitute the differential Scale required.

Some UJes of the foregoing Propofitions.

We have feen in our lvirit ${ }^{\text {th }}$ Problem, that if two Adverfaries, whofe proportion of Skill be as a to b, play together till fuch time as either of them wins a certain number of Stakes, fuch as 4 for inftance, the Probability of the Play's not ending in any given number of Games will be determined by

$$
\begin{aligned}
& \frac{4 a^{3} b+6 a a b b+4 a b^{3}}{\overline{a+b})^{4}} \text { for } 4 \text { Games. } \\
& 14 a^{4} b b+\frac{20 a^{3} b^{3}+14 a a b b^{4}}{a+b^{6}} \text { for } 6 \text { Games. } \\
& \frac{48 a^{5} b_{3}+68 a^{4} b^{4}+48 a^{3} b^{5}}{a+b^{8}} \text { for } 8 \text { Games. } \\
& \frac{16_{4} a^{6} b^{4}+232 a^{5} 5+164 a 4 b^{6}}{a+b^{10}} \text { for ro Games. } \\
& \frac{560 a^{7} b s+\frac{732 a^{6} b^{6}+56 c a 5 b 7}{a+b^{12}}}{} \text { for } 12 \text { Games. }
\end{aligned}
$$ \&c.

Wherein it is evident that each Term in each of the three Columns written above is referred to the two preceding by a conftant Scale of Relation, fo that if the Terms of the firft Column which are $\frac{4 a^{3} b}{a+b+}, \frac{1 a^{4} b b}{a+b^{6}}, \frac{4^{8} a 5^{53}}{a+b b^{8}}, \frac{164 a^{6} b^{4}}{a+b^{70}}, \frac{5 f 0 a^{10} b s}{7+b^{12}}$, \&c. be refpectively called $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{K}, \& \mathrm{c}$. and that for fhortnefs fake we fuppofe $\frac{a b}{a+b^{2}}=r$, we thall find $\mathrm{G}=4 r \mathrm{~F}-2 r r \mathrm{E}, \mathrm{H}=4 r \mathrm{G}-2 r r \mathrm{~F}$, and fo on; and therefore confidering the Sum of every three Terms whereby each Probability is expreffed as one fingle Term, and denoting thofe Sums refpectively by $S, T, U, X, \& c c$. we chall find $\mathrm{U}=4 r \mathrm{~T}-2 r r \mathrm{~S}, \mathrm{X}=4 r \mathrm{U}-2 r r \mathrm{~T}$, and fo on; from which it follows that the Method of determining the Probability of the Play's not ending in any number of Games given, is no more than the finding of a Term in a recurring Series.

Let it therefore be required to find the Probability of 4 Stakes not being loft in 60 Games, to anfwer this, let it be imagined that the Probabilities of not ending in
are expreffed by $C, D, E, F, G, H, \ldots \ldots$. \quad refpectively; then calling l the number of Games given, it is evident that the Term K is diftant from the Term C by an Interval $=\frac{1}{2} l$, in this $\mathrm{Cafe}=30$, the odd numbers being omitted, by reafon it is impoffi-
ble an even number of Stakes fhould be won or loft exactly in an odd number of Games: moreover it being a certainty that the Set of 4 Stakes to be won or loft can neither be concluded before the Play begins, nor when no more than two Games are played off, it follows that the two Terms C, and D, are each of them equal to Unity; for which reafon, if out of the Scale of Relation $4 r-2 r r$, or rather out of the differential Scale $1-4 r+2 r r$, we form the Equation, $x x-4 r x+2 r r=0$, and that the roots of that Equation be m and p, and then make $\mathrm{A}=\frac{1-p}{m-p}, \mathrm{~B}=\frac{1-m}{p-m}$, the two Terms alone $\mathrm{A} m^{\frac{1}{2} l}+\mathrm{B} p^{\frac{1}{2} l}$, will determine the Probability required. This being conformable to Corollary $2^{\text {d }}$ of our vi ${ }^{\text {th }}$ Propofition, it will be proper to confult it.

But becaufe in higher Cafes, that is when the number of Stakes to be won or loft is larger, it would fometimes be infinitely laborious to extract the Roots of thofe Equations, it will be proper to fhew how thofe Roots are actually to be found in a Table of Sines. Of which to give one Infance, let it be propofed to find the Probability of the Play's not ending in any number of Games l, when the number of Stakes to be won or loft is 6 ; then arguing in the fame manner as in the preceding Cafe, let the Probabilities of the Play's not being concluded in $0,2,4,6,8,10---l$ Games be refpectively $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{K} \ldots-z$; then we may conclude that the three Terms D, E, F ftanding refpectively over-againft the number of Games $0,2,4$, are each of them equal to Unity, it being a certainty that the Play cannot be concluded in that number of Games. Wherefore having taken the differential. Scale $1-6 r+9 r r-2 r^{3}$, which belongs to that number of Stakes 6 , and formed out of it the Equation $x^{3}-6 r x x+\operatorname{grr} x-2 r^{3}=0$, let the Roots of that Equation be denoted by m, p, q; then making. $\mathrm{A}=\frac{\overline{1-p} \times \overline{1-q}}{m-p} \times m-q \quad \mathrm{~B}=\frac{\overline{1-q} \times \overline{1-m}}{p-q \times p-m}, \mathrm{C}=\frac{\overline{1-m} \times \overline{1-p}}{q-m \times q-p}$, the Probability required will be $\mathrm{A}^{\frac{1}{2} l}+\mathrm{B} p^{\frac{1}{2} l}+\mathrm{C}^{\frac{1}{2}}$.

Now I fay that the Roots m, p, q of the Equation above written, may be derived from a Table of Sines; for if the Semi-circumference of a Circle whofe Radius is $2 r$, be divided into 6 equal parts, and we take the Co-verfed Sines of the Arcs that are $\frac{1}{6}, \frac{3}{6}, \frac{5}{6}$ of the Semi-circumference, fo that the Numerators of thofe Fractions be all the odd numbers contained in 6 , thofe Co-verfed Sines
will be the Values of m, p, q, and the Rule is general and extends to all Cafes; fill it is obfervable that when the number of Stakes is odd, for Infance 9 , we ought to take only $\frac{1}{9}, \frac{3}{9}, \frac{5}{9}$, $\frac{7}{9}$ of the Semi-circumference, and reject the laft Term $\frac{9}{9}$ expreffing the whole Semi-circumference.
But what ought chiefly to recommend this Method is, that fuppofing m to be the greateft Co-verfed Sine, the firft Term alone Am ${ }^{\frac{1}{2} l}$ will give a fufficient approximation to the Probability required, efpecially if l be a large number in itfelf, and it be alfo large in refpect to the number of Stakes.

Still thefe Rules would not be eafily practicable by reafon of the great number of Factors which might happen to be both in the Numerator and Denominator to which A is fuppofed equal, if I had not, from a thorough infpection into the nature of the Equations which determine the Values of $m, p, q, \& c$. deduved the following Theorems.
r°, If n reprefents the number of Stakes to be won or loft, whether that number be even or odd, then the Numerator of the Fraction to which A is equal, viz. $\overline{1-p} \times \overline{I-q} \times \overline{1-\int} \times \overline{1-t}$, $\& c$. will always be equal to the Fraction $\frac{a^{n}+b^{n}}{a+b b^{*} \times m}$; and in the fame manner that the Numerator of the Fraction to which B is equal, wiz. $\overline{\mathrm{I}-q} \times \overline{\mathrm{I}-\mathrm{\rho}} \times \mathrm{r}-t$, \&c. will always be equal to the Fraction

2°, If n be an even number, and that m^{\prime} be the right Sine correfponding to the Co-verfed Sine. m; then the Denominator of the Fraction to which A is equal, viz. $\overline{m-p} \times \overline{m-q} \times \overline{m-\rho} \times \overline{m-t}$, \&c. will always be equal to the Fraction $\frac{n r^{\frac{1}{2} n}}{m^{\prime}}$; and in the fame manner if p^{\prime} reprefent the right Sine belonging to the Co-verfed Sine p, then the Denominator of the Fraction to which B is equal, viz. $\overline{p-q} \times \overline{p-\int} \times \overline{p-t}, \& c$. will always be equal to the Fraction $\frac{n r^{\frac{1}{2} n}}{p^{\prime}}$, and fo on.
3°, If n be an odd number, and that m^{\prime} be, as before, the right Sine correfponding to the Co-verfed Sine m; then the Denomi-

The Doctrine of Chances.

nator of the Fraction to which A is equal will be $\frac{n r^{\frac{1}{2}} n}{m^{\prime} \sqrt{m}}$, and the Denominator of the Fraction to which B is equal will be $\frac{n r^{\frac{1}{2}} n}{p^{\prime} \sqrt{ } p}$.

Corollary

From all which it follows, that the Method of determining the Probability of a certain number n of Stakes not being loft in a given number l of Games, may be thus expreffed.

Let Lobe fuppofed $=\frac{a^{n}+b^{n}}{a+b^{n}}$, and $r=\frac{a b}{a+b^{2}}$, then that Probability will be

$$
\frac{\mathrm{L}}{n r^{\frac{1}{2}} n} \text { into } \frac{m^{\prime}}{\mathrm{I}-m} \times m^{\frac{1}{2} l}-\frac{p^{\prime}}{\mathrm{I}-p} \times p^{\frac{1}{2} l}+\frac{q^{\prime}}{1-p} \times q^{\frac{1}{2} l}-\frac{s^{\prime}}{1-s^{\frac{1}{2}} l} \times s^{2}
$$

\&c. when n is an even number, or
$\frac{L}{n r^{\frac{1}{2}} n}$ into $\frac{m^{\prime} \sqrt{ } m}{1-m} \times m^{\frac{l-1}{2}}-\frac{p^{\prime} \sqrt{ } p}{1-p} \times p^{\frac{l-1}{2}}+\frac{q^{\prime} \sqrt{ } q}{1-q} \times q^{\frac{l-1}{2}}-\frac{s \sqrt{ } s}{1-s} \times s^{\frac{L-1}{2}}$ \&c. when n is an odd nnmber.

But, becaufe $m^{\frac{l-1}{2}} \times \sqrt{ } m, p^{\frac{l-1}{2}} \times \sqrt{ }, \& c$. are the fame as $m^{\frac{1}{2}} l, p^{\frac{1}{2} l}$ refpectively, it is plain that both Cafes are reduced to one and the fame Rule.

It was upon this foundation that I prefcribed the Rule to be feen in my lxix ${ }^{\text {th }}$ Problem, wherein I did not diftinguifh the odd Cafes from the even.

But altho' the Rule there given feems fomewhat different from what it is here, yet at bottom there is no difference; it confifting barely in this, that whereas $2 r$ in this place is the Radius of the Circle to which the Calculation is adapted, there it is Unity, and that there the Co-verfed Sines were expreffed by their Equivalents in right Sines; there was alfo this little difference, that the Denominators 1 - $m, 1-p$, \& c. were expreffed by means of the verfed Sines of thofe Arcs, to which m and p are co-verfed Sines.

Other Variations might be introduced, fuch for inftance as might arife from the confideration of $\sqrt{ } m r, \sqrt{ } p r, \& x c$. being the right Hh

Sine9

234

 The Doctrine of Chances.Sines of $\frac{1}{2}$ the Complements to a Quadrant of the Arcs originally taken.

But to fhew the farther ufe of thefe Series, it will be convenient to propofe a Problem or two more relating to that Subject.

P R O B L E M LXX.

M and N , whofe proportion of Chances to win one Game are refpectively as a to b, refolve to play together till one or the other bas loft 4 Stakes: two Standers by, R and S , concern themfelves in the Play, R takes the fide of M , and S of N , and agree betwixt them, that R 乃all Set to S , the Sum L to the Sum G on the firft Game, 2 L to 2 G on the fecond, 3^{L} to ${ }_{3} \mathrm{G}$ on the third, ${ }_{4} \mathrm{~L}$ to 4 G on the fourtb, and in cafe the Play be not then concluded, ${ }_{5} \mathrm{~L}$ to 5 G on the fifth, and $\int 0$ increafing perpetually in Aritbmetic Progreflion the Sums which they are to fet to one another, as long as M and N play; yet with this farther condition, that the Sums, Set down by them R and S , hall at the end of each Game be taken up by the Winner, and not left upon the Table to be taken up at once upon the Conclufion of the Play: it is demanded bow the Gain of R is to be effimated before the Play begins.

Solution.

Let there be fuppofed a time wherein the number p of Games has been played; then R having the number a of Chances to win the Sum $p-1 \times G$ in the next Game; and S having the number b of Chances to win the Sum $\overline{p+1} \times L$, it is plain that the Gain of R in that circumftance ought to be eftimated by the quantity $\overline{p+1} \times \frac{\overline{a G-b L}}{a+b L}$; but this Gain being to be eftimated before the Play begins, it follows that it ought to be eftimated by the quantity $p+1 \times \frac{a G-b L}{a+b}$ multiplied by the refpective Probability there

The Doctrine of Chances.

there is that the Play will not then be ended; and therefore the whole Gain of R is the Sum of the Probabilities of the Play's not ending in $0,1,2,3,4,5,6$, \&c. Games in infinitum, multiplied by the refpective Values of the quantity $\overline{p+\mathrm{I}} \times \frac{a(\mathrm{G}-b \mathrm{~L}}{a+b}, p$ being interpreted fucceffively by the Terms of the Arithmetic Progrefion, $0,1,2,3,4,5,6, \& c$. Now, let thefe Probabilities of the Play's not ending be refpectively reprefented by $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$, G, I, \&c. let alfo the Quantity $\frac{a G-b L}{a+b}$, be called S, and then it will follow that the Gain of R will be expreffied by the Series $\mathrm{AS}+2 \mathrm{BS}+3 \mathrm{CS}+4 \mathrm{DS}+5 \mathrm{ES}+6 \mathrm{FS}+7 \mathrm{GS}, 8 \mathrm{cc}$. but in this Problem, altho' the Probabilities of the Play's not ending decreafe continually, yet the number of Stakes being even, the Probability of the Play's not ending in an odd number of Games is not lefs than the Probability of not ending in the even number that immediately precedes the odd; and therefore $\mathrm{B}=\mathrm{A}, \mathrm{D}=\mathrm{C}, \mathrm{F}=\mathrm{E}$, $\mathrm{I}=\mathrm{G}$, \&cc. from whence it follows that the Gain of R will be expreffed by the product of S into $3 \mathrm{~A}+7 \mathrm{C}+11 \mathrm{E}+15 \mathrm{G}+19 \mathrm{I}$, \&xc. but the differential Scale for the Series $\mathrm{A}+\mathrm{C}+\mathrm{E}+\mathrm{G}$, \&c. is $1-4 r+2 r r$, wherein r is fuppofed $=\frac{a b}{a+b^{2}}$, and the differential Scale for the Series $3+7+11+15+19$, \&c. is 1 $3^{a}+3 a a-a^{3}$, wherein $a=1$. And therefore the differential Scale for the Series $3 \mathrm{~A}+7 \mathrm{C}+11 \mathrm{E}, \& \mathrm{c}$. confifting of the products of the Terms of one Series by the correfponding Terms of the other, will be $1-4 r+2 r r^{2}$, or $1-8 r+20 r r-16 r^{3}+$ $4 r^{4}$; and therefore having written down the four firft Terms of the Series to be fummed up, viz. as mary Terms wanting one as there are in the differential Scale, multiply them in order by the differential Scale according to the prefcription given in the Remark belonging to our third Propofition, and the Product will be the Numerator of the Fraction expreffing the Sum, of which Fraction the Denominator will be $\overline{1-4^{r}+2 r r}=$; But to make this the plainer, here follows the Operation,

$$
\begin{gathered}
\frac{3 \mathrm{~A}+7 \mathrm{C}+11 \mathrm{E}+15 \mathrm{G}}{1-8 r+20 r r-16 r^{3}} \cdots \\
\frac{1}{3 \mathrm{~A}+7 \mathrm{C}+1 \mathrm{E}+15 \mathrm{G}} \\
-24 r \mathrm{~A}-56 r \mathrm{C}-88 r \mathrm{E} \\
+60 r r \mathrm{~A}+140 r r \mathrm{C} \\
-48 r^{3} \mathrm{~A}
\end{gathered}
$$

${ }_{2} 3^{6}$ The Doctrine of Chances.
And thus is the Numerator obtained: but $A=1$, it being a certainty that the Play cannot be ended before it is begun, and C is likewife $=\mathrm{I}$, it being a certainty that 4 Stakes cannot be loft neither before nor at the expiration of 2 Games; but by the law of Relation of the Terms of the Series, $\mathrm{E}=4 r \mathrm{C}-2 r r \mathrm{~A}$, and $\mathrm{G}=$ $4 r \mathrm{E}-2 r r \mathrm{C}$, and therefore the proper Subftitutions being made, the Sum of the Series will be found to be S into $\frac{10-36 r+36 r+8 r^{3}}{1-4 r+2 r r^{2}}$ and now in the room of S and r fubftituting their refpective Values $\frac{a \mathrm{G}-b \mathrm{~L}}{a+b}$ and $\frac{a b}{a+b)^{2}}$ the Sum $\frac{a \mathrm{G}-b \mathrm{~L}}{a+b}$ into

$$
\frac{\left.10+2 a a 5 b+42 a^{4} b b+64 a^{3} b^{3}+42 a a b b^{4}+2+a b^{5}+110 b^{6} \times \overline{a+b}\right)^{2}}{\left.a^{4}+b^{4}\right)^{2}}
$$

will exprefs the Gain of R.

Coroliaryi.

If the Stake L be greater than the Stake G, in the fame proportion as a is greater than b, there can be no advantage on either fide.

Coroliary 2.

If a and b are equal, the Gain of R will be 216 times the half difference between the Stakes G and L: thus if G fands for a Guinea of $2 \mathrm{I}^{/ 3}$. and L for $20 / \mathrm{k}$. the Gain of R will be 216 Sixpences, that is, $5^{L .}-8 / b$.

Corollary 3 .

If a be greater than b, the Gain of R, according to that inequality, will vary an infinite number of ways, yet not be greateft when the proportion of a to. b is greateft; fo that for Inftance, if the proportion of a to b is 2 to I , and G and L are equal, the Gain of R will be about $29 \frac{1}{4} G$; but if a is to b as 3 to 1 , the Gain of R will be no more than about $22 \frac{1}{4} G$; and if the proportion of a to b be infinitely great, which would make R win infallibly, the Gain of R will be only ro G. But altho' this may feem at firft a very ftrange Paradox, yet the reafon of it will eafily be apprehended from this confideration, that the greater the proportion is of a to b, fo much the fooner is the Play likely to be concluded; and therefore if that proportion were infinite, the Play would neceffarily be terminated in 4 Games, which would make the Gain of R to be $I+$ $2+3+4=10$.

But if it was required what muft be the proportion of a to b which will afford to R the greateft advantage poffible, the anfwer will be very near 2 to 1 , as may be found eafily upon Trial ; and may be found accurately by the Method which the Geometricians call de Maximis \mathcal{E} Minimis.

PR O B L E M LXXI.

If M and N , whofe number of Cbances to win one Game are refpectively as a to b, play togetber till four Stakes are woon or loft on either fide; and that at the fame time, R and S whofe number of Cbances to win one Game are refpectively as c to d , play alfo together till five Stakes are won or loft on either fide; what is the Probability that the Play between M and N will be ended in fewer Games, than the Play between R and S .

Solution.

The Probability of the firt Play's being ended in any number of Games before the fecond, is compounded of the Probability of the firf Play's being ended in that number of Games, and of the fecond's not being ended with the Game immediately preceding: from whence it follows, that the Probability of the firft Play's ending in an indeterminate number of Games before the fecond, is the Sum of all the Probabilities in infinitum of the firft Play's ending, multiplied by the refpective Probabilities of the fecond's not being ended with the Game immediately preceding.

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \& \mathrm{sc}$. reprefent the Probabilities of the firf Play's ending in $4,6,8,10,12$, \& cc. Games refpectively; let alfo. F, G, H, K, L, \&cc. reprefent the Probabilities of the fecond's not being ended in $3,5,7,9,11, \& c$. Games refpectively : hence, by what we have laid down before, the Probability of the firft Play's ending before the fecond will be reprefented by the infinite Series AF $+\mathrm{BG}+\mathrm{CH}+\mathrm{DK}+\mathrm{EL}, \& \mathrm{c}$. Now to find the Law of Relation in this third Series, we muft fix the Law of Relation in the firft and fecond, which will be done by our $\mathrm{Lx}^{\text {th }}$ Problem, it being for the firft $4 r-2 r r$, wherein r is fuppofed $=\frac{a b}{a+b)^{2}}$; and becaure, as we have obferved before, the Law of Relation in thofe Series

23^{8} The Doctrine of Chances.

Series which exprefs the Probability of not ending, is the fame as the Law of Relation in the refpective Series which exprefs the Probability of ending; it will alfo be found by the directions given in our $\mathrm{Lx}^{\text {th }}$ Problem, that if we fuppofe $\frac{(d}{c+d)^{2}}=m$, the Law of Relation for the fecond Series will be $5 m-5 m m$, and therefore the Laws of Relation in the firt and fecond Series will refpectively be $1-4 r+2 r r$, $1-5^{m}+5 m m$. And now having fuppofed thofe two differential Scales as Equations $=0$, and fuppofed alfo $r m=z$, we fhall find by the Rules delivered in our $1 x^{\text {th }}$ Propofition, that the Scale of Relation for the third Series will be 1 $20 z+110 z z-200 z^{3}+100 z^{4}$; and therefore having taken the four firt Terms of the third Series, and multiplied them by the differential Scale, according to the proper Limitations prefcribed in our $111^{\text {d }}$ Propofition, we fhall find the Sum of the third Series to be

$$
\begin{array}{r}
\mathrm{AF}+\mathrm{BGG}+\mathrm{CH}+\mathrm{DK} \\
-20 \mathrm{AFG}-20 \mathrm{BG} z-20 \mathrm{CHz} \\
+110 \mathrm{AFzz+110BGzz} \begin{array}{r}
-200 \mathrm{AF}^{3}
\end{array} \\
\begin{array}{r}
1-20 z+110 z^{2}-200 z^{3}+100 z^{4}
\end{array}
\end{array}
$$

Now fuppofing S to reprefent the Fraction $\frac{a^{4}+b^{4}}{a+b^{4}}$, the four Terms $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ will be found to be $\mathrm{IS}+4 r \mathrm{~S}+14 r r S+48 r^{3} S$; but the four Terms F, G, H, K wherein S is not concerned will be found to be $\mathrm{I}, 5 \mathrm{~m}-5 \mathrm{~mm}, 20 \mathrm{~mm}-25 \mathrm{~m}^{3}, 75 \mathrm{~m}^{3}-100 \mathrm{~m}^{4}$; and therefore the proper Subftitutions being made in the Sum above written, we Chall have that Sum reduced to its proper Data; and that Sum thus reduced will exhibit the Probability required. But becaufe thofe Data are many, it cannot be expected that the Solution Chould have fo great a degree of Simplicity as if we had reftrained a and b to a ratio of Equality, which if we had, the Probability required would have been expreffed by the Fraction $\frac{2 z-10 z z+c z^{3}}{1-20 z+110 z z-200 z^{3}+100 z^{+}}$; but becaufe r has been fuppofed $=\frac{a b}{a+b^{2}}$, it follows that r in this Cafe is $=\frac{1}{4}$: and again, becaufe m has been fuppofed $=\frac{c d}{c+a}$, then m is alfo $=\frac{1}{4}$, for which reafon $r m$ or $z=\frac{1}{16}$, for which reafon fubftituting $\frac{1}{16}$ inftead of z, the Probability required will be expreffed by the Fraction

Fraction $\frac{476}{723}$: Now fubtracting this Fraction from Unity, the remainder will be the Fraction $\frac{247}{723}$, and therefore the Odds of the firf Play's ending before the fecond will be 476 to 247 , or 27 to 14 nearly.

PR O B L E M LXXII.

A and B playing together, and baving an equal number of Cbances to win one Game, engage to a Spectator S that afier an even number of Games n is over, the Winner Mall give bim as many Pieces as be wins Games over and above one balf the number of Games played, it is demanded bow the Expectation of S is to be determined.

Solution.

Let E denote the middle Term of the Binomial $a+b$ raired to the Power n, then $\frac{\frac{1}{2} n \mathrm{E}}{2^{n}}$ will exprefs the number of Pieces which the Spectator has a right to expect.

Thus fuppofing that A and B were to play 6 Games, then raifing $a+b$ to the $6^{\text {th }}$ Power, all the following Terms will be found in it, viz. $a^{6}+6 a^{5} b+15 a^{4} b b-120 a^{3} b^{3}+15 a a b^{4}+6 a b^{5}+b^{6}$.

But becaufe the Chances which A and B have to win one Game have been fuppofed equal, then a and b may both be made $=\mathrm{I}$, which will make it that the middle Term E will be 20 ; therefore this number being multiplied by $\frac{1}{2} n$, that is in this Cafe by 3 , the Product will be 60 , which being divided by 2^{n} or 2^{6}, that is by 64 , the Quotient will be $\frac{60}{64}$ of $\frac{15}{16}$, and therefore the Expectation of S is as good to him as if he had $\frac{15}{16}$ of a Piece given him, and for that Sum he might transfer his Right to another.

It will be eafy by Trial to be fatisfied of the Truth of this Conclufion, for refuming the $6^{\text {th }}$ Power of $a+b$, and confidering the firf Term a^{6}, which Thews the number of Chances for A to win 6 times ; in which Cafe S would have 3 Pieces given him, then the Expecta.

Expectation of S arifing from that profpect is $\frac{3 a^{6}}{a+b^{6}}$, that is $\frac{3}{6_{4}}$; confidering next the Term $6 a^{5} b$ which denotes the number of Chances for A to win 5 times and lofing once, whereby he would get two Games above 3, and confequently S get 2 Pieces, then the Expectation of S arifing from that profpect would be $\frac{2 \times 6 a b b}{a+b^{\circ}}$ or $\frac{12}{64}$; lafly confidering the third Term $15 a^{4} b^{2}$ which fhews the number of Chances for A to get 4 Games out of 6 , and confequently for S to get I Piece, the Expectation of S arifing from that profpect would be $\frac{1 \times 1 \times a+b b}{a+b b^{+}}$or $\frac{15}{64}$, the fourth Term $20 a^{3} b^{3}$ would afford nothing to S, it denoting the number of Chances for A to win no more than 3 Games; and therefore that part of the Expectation of S, which is founded on the Engagement of A to him, would be $\frac{3+12+15}{64}=\frac{30}{64}$; but he expects as much from B, and therefore his whole Expectation is $\frac{60}{64}=\frac{15}{16}$ as had been before determined.

And in the fame manner, if A and B were to play I2 Games the Expectation of S would be $\frac{5544}{4096}$, which indeed is greater than in the preceding Care, but lefs than in the proportion of the number of Games played, his Expectation in this Cafe being to the former as 5544 to 3840 , which is very little more than in the proportion of 3 to 2 , but very far from the proportion of 12 to 6 , or 2 to I .

And if we fuppofe ftill a greater number of Games to be played between A and B, the Expectation of S would fill increafe, but in a lefs proportion than before; for inflance, if A and B were to play 100 Games, the Expectation of S would be 3.9795 ; if $200,5.633^{8}$; if $300,6.9041$; if $400,7.9738$; if $500,8.916 \mathrm{r}$; if $700,800,900$, $10.55^{2}, 11.280,11.965$ refpectively, fo that in 100 Games the Expectation of S would be in refpect to that number of Games about $\frac{1}{25}$, and in 900 Games that Expectation would not be above $\frac{1}{75}$. Now how to find the middle Terms of thore high Powers will be fhewn afterwards.

Corollary.

From the foregoing confiderations, it follows, that if after taking a great number of Experiments, it fhould be obferved that the hap-

The Doctrine of Chances. 241

 penings or failings of an Event have been very near a ratio of Equality, it may fafely be concluded, that the Probabilities of its happening or failing at any one time affigned are very near equal.
PROBLEM LXXIII.

A and B playing together, and baving a different number of Chances to win one Game, which number of Cbances I fuppofe to be refpectively as a to b, engage themfelves to a Spectator S, that after a certain number of Games is over, A 乃all give bim as many Pieces as be wins Games, over and above $\frac{a}{a+b} n$, and B as many as be wins Games, over and above the number $\frac{b}{a+b} n$; to find the Expectation of S.

Solution.

Let E be that Term of the Binomial $a+b$ raifed to the Power n, in which the Indices of the Powers of a and b fhall be in the fame ratio to one another as a is to b; let alfo p and q denote refpectively thofe Indices, then will the Expectation of S from A and B together be $\frac{2 p q}{n \times \overline{a+b} b^{n}} \mathrm{E}$, or $\frac{p q}{n \times x^{a+b^{n}}} \mathrm{E}$ from either of them in particular.
Thus fuppofing the number of Games n to be 6, and that the ratio of a to b is as 2 to 1 ; then that Term E of the Binomial $a+b$ raifed to its $6^{\text {th }}$ Power, wherein the Indices have the fame ratio to one another as 2 to I , is $\mathrm{I} a^{4} b^{2}$, and therefore $p=4$, and $q=2$; and becaufe, a, b, p, q, n are refpectively $2,1,4,2,6$, thence the Expectation $\frac{2 \neq 9}{n \times \bar{a}+\lambda^{n}} \times \mathrm{E}$ will be in this particular Cafe $\frac{16}{4374} \times 240$, or $\frac{640}{729}=\frac{9}{10}$ nearly.

But fuppofing that A and B refolve to play 12 Games, then that Term of the Binomial $a+b$ raifed to its $12^{\text {th }}$ Power, wherein the Indices p and q have the fame ratio as 2 to I , is $495 a^{8} b^{4}$; and becaufe the Quantities a, b, p, q, n, are refpectively $2, \mathrm{I}, 8,4, \mathrm{I} 2$, the Expectation of S will be $\frac{675840}{531441}$ or $\frac{14}{11}$ nearly.

And again, if A and B play ftill a greater number of Games, the Expectation of S will perpetually increafe, but in a lefs proportion than of the number of Games played.

Corollary.

From this it follows, that if after taking a great number of Experiments, it fhould be perceived that the happenings and failings have been nearly in a certain proportion, fuch as of 2 to 1 , it may fafely be concluded that the Probabilities of happening or failing at any one time affigned will be very near in that proportion, and that the greater the number of Experiments has been, fo much nearer the Truth will the conjectures be that are derived from them.

But fuppofe it fhould be faid, that notwithftanding the reafonablenefs of building Conjectures upon Obfervations, ftill confidering the great Power of Chance, Events might at long run fall out in a different proportion from the real Bent which they have to happen one way or the other; and that fuppofing for Inftance that an Event might as eafily happen as not happen, whether after three thoufand Experiments it may not be poffible it Chould have happened two thoufand times and failed a thoufand; and that therefore the Odds againft fo great a variation from Equality chould be affigned, whereby the Mind would be the better difpofed in the Conclufions derived from the Experiments.

In anfwer to this, I'll take the liberty to fay, that this is the hardeft Problem that can be propofed on the Subject of Chance, for which reafon I have referved it for the laft, but I hope to be forgiven if my Solution is not fitted to the capacity of all Readers; however I fhall derive from it fome Conclufions that may be of ufe to every body: in order thereto, I fhall here tranflate a Paper of mine which was printed November 12, 1733, and communicated. to fome Friends, but never yet made public, referving to myfelf the right of enlarging my own Thoughts, as occafion hall require.

Novemb. 12, 1733°

A Method of approximating the Sum of the Terms of the Binomial $\overline{\mathrm{a}+\mathrm{b}^{n}}{ }^{n}$ expanded into a Series, from whence are deduced fome practical Rules to eftimate the Degree of AJent which is to be given to Experiments.

ALTHO' the Solution of Problems of Chance often requires that feveral Terms of the Binomial $a+b$ b added together, neverthelefs in very high Powers the thing appears, fo laborious, and of fo great difficulty, that few people have undertaken that Tafk; for befides Fames and Nicolas Bernoulli, two great Mathematicians, I know of no body that has attempted it ; in which, tho' they have fhewn very great $\mathbb{1}$ kill, and have the praife which is due to their Induftry, yet fome things were farther required; for what they have done is not fo much an Approximation as the determining very wide limits, within which they demonftrated that the Sum of the Terms was contained. Now the Method which they have followed has been briefly defcribed in my Mifcellanea Analytica, which the Reader may confult if he pleafes, unlers they rather chufe, which perhaps would be the beft, to confult what they themfelves have writ upon that fubject: for my part, what made me apply myfelf to that Inquiry was not out of opinion that I fhould excel others, in which however I might have been forgiven; but what I did was in compliance to the defire of a very worthy Gentleman, and good Mathematician, who encouraged me to it: I now add fome new thoughts to the former; but in order to make their connexion the clearer, it is neceffary for me to refume fome few things that have been delivered by me a pretty while ago.
I. It is now a dozen years or more fince I had found what follows; If the Binomial $1+1$ be raifed to a very high Power denoted by n, the ratio which the middle Term has to the Sum of all the Terms, that is, to 2^{n}, may be expreffed by the Fraction $\frac{2 A \times \overline{n-1}}{n^{4} \times \sqrt{n-1}}$, wherein A reprefents the number of which the $\mathrm{Hy}-{ }^{-}$ perbolic Logarithm is $\frac{1}{12}-\frac{1}{{ }^{360} \text { I i } 2^{1200}}+\frac{1}{11680}, ~ \& x c$. But be- $\begin{gathered}\text { caufe }\end{gathered}$
caufe the Quantity $\frac{\overline{n-1}}{n^{n}}$ or $\overline{1-\frac{1}{n}}{ }^{n}$ is very nearly given when n is a high Power, which is not difficult to prove, it follows that, in an infinite Power, that Quantity will be abfolutely given, and reprefent the number of which the Hyperbolic Logarithm is - 1; from whence it follows, that if B denotes the Number of which the Hyperbolic Logarithm is $-1+\frac{1}{12}-\frac{1}{3^{60}}+\frac{1}{1260}$ $-\frac{1}{1680}$, \&c. the Expreffion above-written will become $\frac{2 B}{\sqrt{n-1}}$ or barely $\frac{2 \mathrm{~B}}{\sqrt{ } n}$: and that therefore if we change the Signs of that Series, and now fuppofe that B reprefents the Number of which the Hyperbolic Logarithm is $1-\frac{1}{12}+\frac{1}{360}-\frac{1}{1200}+\frac{1}{1080}, \& 8 c$. that Expreffion will be changed into $\frac{2}{\sqrt{\sqrt{~}} n}$

When I firft began that inquiry, I contented myfelf to determine at large the Value of B, which was done by the addition of fome Terms of the above-written Series; but as I perceived that it converged but flowly, and feeing at the fame time that what I had done anfwered my purpofe tolerably well, I defifted from proceeding farther till my worthy and learned Friend Mr. Fames Stirling, who had applied himfelf after me to that inquiry, found that the Quantity B did denote the Square-root of the Circumference of a Circle whole Radius is Unity, fo that if that Circumference be called c, the Ratio of the middle Term to the Sum of all the Terms will bo expreffed by $\frac{2}{\sqrt{n c}}$.

But altho' it be not neceffary to know what relation the number B may have to the Circumference of the Circle, provided its value be attained, either by purfuing the Logarithmic Series before mentioned, or any other way; yet I own with pleafure that this difcovery, befides that it has faved trouble, has fpread a fingular Elegancy on the Solution.
II. I alfo found that the Logarithm of the Ratio which the middle Term of a high Power has to any Term diftant from it by an Interval denoted by l, would be denoted by a very near approximation, (fuppofing $m=\frac{1}{2} n$) by the Quantities $m+l-\frac{1}{2} \times$ Log: $\overline{m+l-1}+\overline{m-l+\frac{1}{2}} \times \log . \overline{m-l+1}-2 m \times$ Log. $m+$ Log. $\frac{m+l}{m}$

Corollary 1.

This being admitted, I conclude, that if m or $\frac{1}{2} n$ bê a Quantity infinitely great, then the Logarithm of the Ratio, which a Term diftant from the middle by the Interval l, has to the middle Term, is $-\frac{2 l l}{n}$.

Corollary 2.

The Number, which anfwers to the Hyperbolic Logarithm $-\frac{2 l l}{n}$, being
$1-\frac{2 l l}{n}+\frac{4 / 4}{2 n h}-\frac{8 l^{6}}{6 n^{3}}+\frac{16 l^{8}}{2+n^{4}}-\frac{32 l^{10}}{120 n^{5}}+\frac{64 / 12^{2}}{720 n^{0}}, \& c c$.
it follows, that the Sum of the Terms intercepted between the Middle, and that whofe diftance from it is denoted by l, will be $\frac{2}{\sqrt{n c}}$ into $l-\frac{2 l 3}{1 \times 3^{n}}+\frac{4^{45}}{2 \times 5^{n z}}-\frac{8 / 7}{6 \times 77^{3}}+\frac{1619}{24 \times 9 n^{4}}-\frac{32 l^{1 / 2}}{120 \times 11 n^{3}}, 8 \mathrm{c}$.

Let now l be fuppofed $=s \sqrt{ } n$, then the faid Sum will be expreffed by the Series
$\frac{2}{\sqrt{c}}$ into $\int-\frac{2 / 3}{3}+\frac{4 / 5}{2 \times 5}-\frac{8 / 7}{6 \times 7}+\frac{16 / 9}{24 \times 9}-\frac{32 \int^{1 / 1}}{120 \times 11}, \& c c$.
Moreover, if \int be interpreted by $\frac{1}{2}$, then the Series will become $\frac{2}{\sqrt{ } \sqrt{c}}$ into $\frac{1}{2}-\frac{1}{3 \times 4}+\frac{1}{2 \times 5 \times 8}-\frac{1}{6 \times 7 \times 10}+\frac{1}{24 \times 9 \times 32}-\frac{1}{120 \times 11 \times 64}, 8 c$. which converges fo faft, that by help of nio more than feven or eight Terms, the Sum required may be carried to fix or feven places of Decimals: Now that Sum will be found to be 0.427812 , independently from the common Multiplicator $\frac{2}{\sqrt{ } \mathrm{C}}$, and therefore to the Tabular Logarithm of 0.427^{812}, which is $\overline{9} .6312529$, adding: the Logarithm of $\frac{2}{\sqrt{6}}$, viz. $\overline{9.9019400, ~ t h e ~ S u m ~ w i l l ~ b e ~} \overline{9} 9.5331929$, to which anfwers the number 0.341344 .

Lemma.
If an Event be fo dependent on Chance, as that the Probabilities of its happening or failing be equal, and that a certain given number n of Experiments be taken to obferve how often it happens and fails, and alfo that l be another given number, lefs than $\frac{1}{2} n$, then the Probability of its neither happening, more frequently than $\frac{1}{2} n+l$ times,
times, nor more rarely than $\frac{1}{2} n-l$ times, may be found as follows.

Let L and L be two Terms equally diftant on both fides of the middle Term of the Binomial $1+1{ }^{n}$ expanded, by an Interval equal to l; let alfo \int be the Sum of the Terms included between L and L together with the Extreams, then the Probability required will be rightly expreffed by the Fraction $\frac{f}{2^{n}}$; which being founded on the common Principles of the Doctrine of Chances, requires no Demonftration in this place.

Coroleary 3.

And therefore, if it was poffible to take an infinite number of Experiments, the Probability that an Event which has an equal number of Chances to happen or fail, fhall neither appear more frequently than ${ }_{2}^{1} n+\frac{1}{2} \sqrt{ } n$ times, nor more rarely than $\frac{1}{2} n$ $\frac{1}{2} \sqrt{ } n$ times, will be expreffed by the double Sum of the number exhibited in the fecond Corollary, that is, by 0.682688 , and confequently the Probability of the contrary, which is that of happening more frequently or more rarely than in the proportion above affigned will be 0.317312 , thofe two Probabilities together compleating Unity, which is the meafure of Certainty: Now the Ratio of thofe Probabilities is in fmall Terms 28 to I3 very near.

Coroleary 4.

But altho' the taking an infinite number of Experiments be not practicable, yet the preceding Conclufions may very well be applied to finite numbers, provided they be great: for Inftance, if 3600 Experiments be taken, make $n=3600$, hence $\frac{1}{2} n$ will be $=1800$, and $\frac{1}{2} \sqrt{ } n=30$, then the Probability of the Event's neither appearing oftner than 1830 times, nor more rarely than 1770 , will be 0.682688 .

Coroleary 5.

And therefore we may lay this down for a fundamental Maxim, that in high Powers, the Ratio, which the Sum of the Terms included between two Extreams diftant on both fides from the middle Term by an Interval equal to $\frac{1}{2} \sqrt[N]{ } n$, bears to the Sum of all
the Terms, will be rightly expreffed by the Decimal 0.682688 , that is $\frac{28}{4!}$ nearly.

Still, it is not to be imagined that there is any neceffity that the number n fhould be immenfely great; for fuppofing it not to reach beyond the $900^{\text {th }}$ Power, nay not even beyond the $100^{\text {th }}$, the Rule here given will be tolerably accurate, which I have had confirmed by Trials.
But it is worth while to obferve, that fuch a fmall part as is $\frac{1}{2} \sqrt{ } n$ in refpect to n, and fo much the lefs in refpect to n as n increafes, does very foon give the Probability $\frac{28}{41}$ or the Odds of 28 to 13 ; from whence we may naturally be led to enquire, what are the Bounds within which the proportion of Equality is contained? I anfwer, that thefe Bounds will be fet at fuch a diftance from the middle Term, as will be expreffed by $\frac{1}{4} \sqrt{ } 2 n$ very near; fo in the Cafe above mentioned, wherein n was fuppofed $=3600, \frac{1}{4} \sqrt{2 n}$ will be about 2 I .2 nearly, which in refpect to 3600 , is not above $\frac{1}{169}$ th part : fo that it is an equal Chance nearly, or rather fomething more, that in 3600 Experiments, in each of which an Event may as well happen as fail, the Excefs of the happenings or failings. above 1800 times will be no more than about 2 I.

Coroleary 6.

If l be interpreted by $\checkmark n$, the Series will not converge fo faft as it did in the former Cafe when l was interpreted by $\frac{1}{2} \sqrt{ } n$, for: here no lefs than 12 or 13 Terms of the Series will afford a tolerable approximation, and it would ftill require more Terms, according as l bears a greater proportion to $\sqrt{ } n$: for which reafon I make ufe in this Care of the Artifice of Mechanic Quadratures, firft invented by Sir Ifaac Nerwoton, and fince profecuted by Mr. Cotes, Mi. Yames Stirling, myfelf, and perhaps others ; it confifts in determining the Area of a Curve nearly, from knowing a certain number of its Ordinates A, B, C, D, E, F, \&ic. placed at equal Intervals; the more Ordinates there are, the more exact will the Quadrature be; but here I confine myfelf to four, as being fufficient for my purpofe : let us therefore fuppofe that the four Ordinates are A, B, C, D, and that the Diftance between the firft and laft is denoted by l, then:

248 Thb Doctrine of Chances.
l, then the Area contained between the firt and the laft will be $\frac{1 \times \overline{A+D}+3 \times \overline{B+C}}{S} \times l$; now let us take the Diftances $O \sqrt{ } n$, $\frac{1}{6} \sqrt{ } n, \frac{2}{6} \sqrt{ } n, \frac{3}{6} \sqrt{ } n, \frac{4}{6} \sqrt{ } n, \frac{5}{6} \sqrt{ } n, \frac{6}{6} \sqrt{ } n$, of which every one exceeds the preceding by $\frac{1}{6} \sqrt{ } n$, and of which the laft is $V n$; of thefe let us take the four laft, viz. $\frac{3}{6} \sqrt{ } \sqrt{ }, \frac{4}{6} \sqrt{ } n, \frac{5}{6} \sqrt{ } n, \frac{6}{6} \sqrt{ } n$, then taking their Squares, doubling leach of them, dividing them all by n, and prefixing to them all the Sign -, we fhall have $-\frac{1}{2},-\frac{8}{9},-\frac{25}{18},-\frac{2}{1}$, which muft be looked upon as Hy perbolic Logarithms, of which confequently the correfponding numbers, viz. $0.60653,0.41111,0.24935,0.13534$ will fand for the four Ordinates A, B, C, D. Now having interpreted l by $\frac{1}{2} \sqrt{ } n$, the Area will be found to be $=0.170203 \times \sqrt{ } n$, the double of which being multiplied by $\frac{2}{\sqrt{n c}}$, the product will be 0.27160 ; let therefore this be added to the Area found before, that is, to 0.682688 , and the Sum 0.95428 will Thew what, after a number of Trials denoted by n, the Probability will be of the Event's neither happening oftner than $\frac{1}{2} n+\sqrt{ } n$ times, nor more rarely than $\frac{1}{2} n-\sqrt{ } n$, and therefore the Probability of the contrary will be 0.04572 : which fhews that the Odds of the Event's neither happening oftner nor more rarely than within the Limits afligned are 21 to 1 nearly.

And by the fame way of reafoning, it will be found that the Probability of the Event's neither appearing oftner than $\frac{1}{2} n+\frac{3}{2} \sqrt{ } n$, nor more rarely than $\frac{1}{2} n-\frac{3}{2} \vee n$ will be $0.998 \% 4$, which will make it that the Odds in this Cafe will be 369 to I nearly.

To apply this to particular Examples, it will be neceffary to eftimate the frequency of an Event's happening or failing by the Square-root of the number which denotes how many Experiments have been, or are defigned to be taken; and this Square-root, according as it has been already hinted at in the fourth Corollary, will be as it were the Modulus by which we are to regulate our Eftimation; and therefore fuppofe the number of Experiments to be taken is 3600 , and that it were required to affign the Probability of the Event's neither happening oftner than 2850 times, nor more rarely than 1750 , which two numbers may be varied at pleafure, provided they be equally diftant from the middle Sum 1800 , then make the half difference

The Doctrine of Chances.

difference between the two numbers 1850 and ${ }^{1750}$, that is, in this Cafe, $50=\int \sqrt{ }$; now having fuppofed $3600=n$, then $\vee n$ will be $=60$, which will make it that 50 will be $=60 \rho$, and confequently $\mathcal{S}=\frac{50}{60}=\frac{5}{6}$; and therefore if we take the proportion, which in an infinite power, the double Sum of the Terms correfponding to the Interval $\frac{5}{6} \sqrt{ } n$, bears to the Sum of all the Terms, we fhall have the Probability required exceeding near.

Lemma 2 .

In any Power $\overline{a+b} n$ expanded, the greatert Term is that in which the Indices of the Powers of a and b, have the fame proportion to one another as the Quantities themfelves a and b; thus taking the $10^{\text {th }}$ Power of $a+b$, which is $a^{10}+10 a^{9} b+45 a^{8} b^{2}+$ $120 a^{7} b^{3}+210 a^{6} b^{4}+25^{2} a^{5} b^{5}+210 a^{4} b^{6}+120 a^{3} b^{7}+45 a^{2} b^{6}$ $-10 a b^{7}+b^{10}$; and fuppofing that the proportion of a to b is as 3 to 2 , then the Term $210 a^{5} b^{4}$ will be the greateft, by reafon that the Indices of the Powers of a and b, which are in that Term, are in the proportion of 3 to 2 ; but fuppofing the proportion of a to b had been as 4 to I , then the Term $45^{8} b^{2}$ had been the greateft.

Lemma 3 .

If an Event fo depends on Chance, as that the Probabilities of its happening or failing be in any affigned proportion, fuch as may be fuppofed of a to b, and a certain number of Experiments be defigned to be taken, in order to obferve how often the Event will happen or fail ; then the Probability that it hall neither happen more frequently than fo many times as are denoted by $\frac{a n}{a+b}+l$, nor more rarely than fo many times as are denoted by $\frac{a n}{a+b}-l$, will be found as follows :

Let L and R be equally diftant by the Interval l from the greateft Term; let alfo S be the Sum of the Terms included between L and R, together with thofe Extreams, then the Probability required will be rightly expreffed by $\frac{s}{a+b^{n}}$.

Coroleary 8.

The Ratio which, in an infinite Power denoted by n, the greateft Term bears to the Sum of all the reft, will be rightly expreffed by K k
the Fraction $\frac{a+b}{\sqrt{\text { abic }}}$, wherein c denotes, as before, the Circumference of a Circle for a Radius equal to Unity.

Coroleary 9.

If, in an infinite Power, any Term be diffant from the Greatef by the Interval l, then the Hyperbolic Logarithm of the Ratio which that Term bears to the Greatef will be expreffed by the Fraction $-\frac{\overline{a+o}{ }^{2}}{2 a b n} \times l l$; provided the Ratio of l to n be not a finite Ratio, but fuch a one as may be conceived between any given number p and $V n$, fo that l be expreffible by $p \sqrt{ } n$, in which Cafe the two Terms L and R will be equal.

Corollary io.

If the Probabilities of happening and failing be in any given Ratio of inequality, the Problems relating to the Sum of the Terms of the Binomial $\overline{a+b^{n}}$ will be folved with the fame facility as thofe in which the Probabilities of happening and failing are in a Ratio of Equality.

Remark I.

From what has been faid, it follows, that Chance very little difturbs the Events which in their natural Inftitution were defigned to happen or fail, according to fome determinate Law ; for if in order to help our conception, we imagine a round piece of Metal, with two polifhed oppofite faces, differing in nothing but their colour, whereof one may be fuppofed to be white, and the other black; it is plain that we may fay, that this piece may with equal facility exhibit a white or black face, and we may even fuppofe that it was, framed with that particular view of fhewing fometimes one face, fometimes the other, and that confequently if it be toffed up Chance fhall decide the appearance; But we have feen in our Lxxyid Problem, that altho' Chance may produce an inequality of appearance, and fill a greater inequality according to the length of time in which it may exert itfelf, yet the appearances, either one way or the other, will perpetually tend to a proportion of Equality : But befides, we have feen in the prefent Problem, that in a great number of Experiments, fuch as 3600 , it would be the Odds of above 2 to I , that one of the Faces, fuppore the white, fhall not appear more frequently. than 1830 times, nor more rarely than 1770 , or in other Terms,
that it Chall not be above or under the perfect Equality by more than $\frac{1}{120}$ part of the whole number of appearances; and by the fame Rule, that if the number of Trials had been 14400 inftead of 3600 , then fill it would be above the Odds of 2 to I, that the appearances either one way or other would not deviate from perfect Equality by more than $\frac{1}{260}$ part of the whole : and in 1000000 Trials it would be the Odds of above 2 to 1 , that the deviation from perfect Equality would not be more than by $\frac{1}{2000}$ part of the whole. But the Odds would increafe at a prodigious rate, if inftead of taking fuch narrow limits on both fides the Term of Equality, as are reprefented by $\frac{1}{2} \sqrt{ } n$, we double thofe Limits or triple them; for in the firft Cafe the Odds would become $2 I$ to I, and in the fecond 369 to 1 , and ftill be vaftly greater if we were to quadruple them, and at laft be infinitely great; and yet whether we double, triple or quadruple them, \mathcal{E}^{c}. the Extenfion of thofe Limits will bear but an inconfiderable proportion to the whole, and none at all, if the whole be infinite ; of which the reafon will eafily be perceived by Mathematicians, who know, that the Square-root of any Power bears fo much a lefs proportion to that Power, as the Index of it is great.

What we have faid is alfo applicable to a Ratio of Inequality, as appears from our $9^{\text {th }}$ Corollary. And thus in all Cafes it will be found, that altbo' Cbance produces Irregularities, fill the Odds will be infinitely great, that in proce/s of Time, thofe Irregularities will bear no proportion to the recurrency of that Order webich naturally refults from Original Design.

Remark II.

As, upon the Suppofition of a certain determinate Law according to which any Event is to happen, we demonftrate that the Ratio of Happenings will continually approach to that Law, as the Experiments or Obfervations are multiplied: fo, converfely, if from numberlefs Obfervations we find the Ratio of the Events to converge to a determinate quantity, as to the Ratio of P to Q ; then we conclude that this Ratio expreffes the determinate Law according to which the Event is to happen.

For let that Law be expreffed not by the Ratio $P: Q$, but by fome other, as $\mathrm{R}: \mathrm{S}$; then would the Ratio of the Events converge to this laft, not to the former: which contradicts our Hypotbefis. And the like, or greater, Abfurdity follows, if we fhould fuppofe the

Event

Event not to happen according to any Law, but in a manner altogether defultory and uncertain; for then the Events would converge to no fixt Ratio at all.

Again, as it is thus demonftrable that there are, in the conftitution of things, certain Laws according to which Events happen, it is no lefs evident from Obfervation, that thofe Laws ferve to wife, ufeful and beneficent purpofes; to preferve the ftedfaft Order of the Univerfe, to propagate the feveral Species of Beings, and furnifh to the fentient Kind fuch degrees of happinefs as are fuited to their State.

But fuch Laws, as well as the original Defign and Purpofe of their Eftablifhment, muft all be from witbout ; the Inertia of matter, and the nature of all created Beings, rendering it impoffible that any thing fhould modify its own effence, or give to itfelf, or to any thing elfe, an original determination or propenfity. And hence, if we blind not ourfelves with metaphyfical duft, we fhall be led, by a fhort and obvious way, to the acknowledgment of the great Maker and Governour of all; Himfelf all-wife, all-powerful and good.

Mr. Nicolas Bernoulli*, a very learned and good Man, by not connecting the latter part of our reafoning with the firf, was led to difcard and even to vilify this Argument from final Caufes, fo much infifted on by our beft Writers; particularly in the Inftance of the nearly equal numbers of male and female Births, adduced by that excellent Perfon the late Dr. Arbutbnot, in Pbil. Tranf. No. 328.

Mr. Bernoulli collects from Tables of Obfervations continued for 82 years, that is from A.D. 1629 to 17It, that the number of Births in London was, at a medium, about 14000 yearly: and likewife, that the number of Males to that of Females, or the facility of their production, is nearly as 18 to 17. But he thinks it the greateft weaknefs to draw any Argument from this againft the Influence of Cbance in the production of the two Sexes. For, fays he,
"Let 14000 Dice, each having 35 faces, 18 white and 17 black, " be thrown up, and it is great Odds that the numbers of white and " black faces fhall come as near, or nearer, to each other, as the " numbers of Boys and Girls do in the Tables."

To which the fhort anfwer is this: Dr. Arbutbnot never faid, " that fuppofing the facility of the production of a Male to that.

[^5]" of the production of a female to be already $f x t$ to nearly the Ratio " of equality, or to that of 18 to 17 ; he was amazed that the Ratio " of the numbers of Males and Females born fhould, for many years, " keep within fuch narrow bounds:" the only Propofition againt which Mr. Bernoulli's reaaoning has any force.
But he might have faid, and we do ftill infift, that "as, from "the Obfervations, we can, with Mr. Bernoulli, infer the facili" ties of production of the two Sexes to be nearly in a Ratio of " equality; fo from this Ratio once difcovered, and manifefly ferv"ing to a wife purpofe, we conclude the Ratio iffelf, or if you will "the Form of the Die, to be an Effect of Intellisence and Defign." As if we were Thewn a number of Dice, each with 18 white and 17 black faces, which is Mr. Bernoulli's fuppofition, we thould not doubt but that thore Dice had been made by fome Artiff ; and that their form was not owing to Cbance, but was adapted to the particular purpofe he had in View.

Thus much was neceffiary to take off any impreffion that the authority of fo great a name might make to the prejudice of our argument. Which, after all, being level to the loweft underftanding, and falling in with the common fenfe of mankind, needed no formal Demonftration, but for the fcholaftic fubtleties with which it may be perplexed; and for the abure of certain words and phrafes; which fometimes are imagined to have a meaning merely becaufe they are often uttered.

Cbance, as we underftand it, fuppofes the Exifence of things, and their general known Properties: that a number of Dice, for inflance, being thrown, each of them fhall fettle upon one or other of its Bafes. After which, the Probability of an affigned Chance, that is of fome particular difpofition of the Dice, becomes as proper a fubject of Inveftigation as any other quantity or Ratio can be.

But Cbance, in atheiftical writings or difcourfe, is a found utterly infignificant : It imports no determination to any mode of Exiffence; nor indeed to Exifence itfelf, more than to non-exifence; it can neither be defined nor underfood: nor can any Propofition concerning it be either affirmed or denied, excepting this one, "That " it is a mere word."

The like may be faid of fome other words in frequent ufe; as. fate, necelfity, nature, a courfe of nature in contradiftinction to the Divine energy: all which, as ufed on certain occafions, are mere founds : and yet, by artful management, they ferve to found fpecious conclufions: which however, as foon as the latent fallacy of theTerm is detected, appear to be no lefs abfurd in themfelves, than they, commonly are hurtful to fociety.

I fhall only add, That this method of Reafoning may be ufefully applied in fome other very interefting Enquiries; if not to force the Affent of others by a ftrict Demonftration, at leaft to the Satisfaction of the Enquirer himfelf: and fhall conclude this Remark with a paffage from the Ars ConjeEtandi of Mr. Fames Bernoulli, Part IV. Cap. 4. where that acute and judicious Writer thus introduceth his Solution of the Problem for Afligning the Limits witbin which, by the repetition of Experiments, the Probability of an Event may approach indefinitely to a Probability given, "Hoc igitur eft illud Problema \&c." Tbis, fays he, is the Problem wbich I am now to impart to the Publick, after baving kept it by me for twenty years: new it is, and difficult; but of fuch excellent ufe, that it gives a bigh value and dignity to every other Branch of this Doctrine. Yet there are Writers, of a Clafs indeed very different from that of Fames Bernoulli, who infinuate as if the DoEtrine of Probabilities could have no place in any ferious Enquiry; and that Studies of this kind, trivial and eafy as they be, rather difqualify a man for reafoning on every other fubject. Let the Reader chufe.

P R O B L E M LXXIV.

To find the Probability of throwing a Cbance affigned a given number of times witbout intermifion, in any given number of Trials.

Solution.

Let the Probability of throwing the Chance in any one Trial be reprefented by $\frac{a}{a+b}$, and the Probability of the contrary by $\frac{b}{a+b}$: Suppofe n to reprefent the number of Trials given, and p the number of times that the Chance is to come up without intermiffion; then fuppofing $\frac{b}{a+b}=x$, take the quotient of Unity divided by 1 - x - $a x x$ - $a a x^{3}-a^{3} x^{4}$ - $a^{4} x^{5} \ldots \ldots---$ - $a^{p--1} x^{p}$, and having taken as many Terms of the Series refulting from that divifion, as there are Units in $n-p+1$, multiply the Sum of the whole by $\frac{a^{p} x^{p}}{b^{p}}$, or by $\frac{a^{p}}{a+b^{p}}$, and that Product will exprefs the Probability required.

ExAmplei.

Let it be required to throw the Chance affigned three times together, in 10 trials, when a and b are in a ratio of Equality, otherwife when each of them is equal to Unity; then having divided I by $1-x-x x-x^{3}$, the Quotient continued to fo many Terms as there are Units in $n-p+1$, that is, in this Cafe to $10-3+1$ $=8$, will be $1+x+2 x x+4 x^{3}+7 x^{4}+13 x^{5}+24 x^{6}+44 x^{7}$. Where x being interpreted by $\frac{b}{a+b}$, that is in this Cafe by $\frac{1}{2}$, the Series will become $1+\frac{1}{2}+\frac{2}{4}+\frac{4}{8}+\frac{7}{10}+\frac{13}{32}+$ $\frac{24}{64}+\frac{44}{128}$, of which the Sum is $\frac{520}{128}=\frac{65}{16}$, and this being multiplied by $\frac{a^{p} x^{P}}{b^{p}}$, that is, in this Care by $\frac{1}{8}$, the Product will be $\frac{65}{128}$, and therefore 'tis fomething more than an equal Chance, that the Chance affigned will be thrown three times together fome time in 10 Trials, the Odds for it being 65 to 6_{3}.
N. B. The continuation of the Terms of thofe Series is very eafy; for in the Cafe of the prefent Problem, the Coefficient of any Term is the Sum of 3 of the preceding; and in all Cafes, 'tis the Sum of fo many of the preceding Coefficients as are denoted by the number p.
But if, in the foregoing Example, the ratio of a to b was of inequality, fuch as, for inftance 2 to 1 , then according to the prefrription. given before, divide Unity by $1-x-2 x x-4 x^{3}$, and the Quotient will be $1+x+3 x x+0 x^{3}+19 x^{4}+49 x^{5}+123 x^{6}+297 x^{7}$, in which the quantity x, which has univerfally been fuppofed $=\frac{b}{a+b}$, will in this Cafe be $=\frac{1}{3}$; wherefore in the preceding Series having interpreted x by $\frac{1}{3}$, we fhall find the Sum of 8 of its Terms will be $=\frac{5994}{2187}=\frac{74}{27}$, and this being multiplied by $\frac{n^{P} x^{p}}{b^{p}}$ which in this Cafe is $\frac{8}{27}$, the Product $\frac{502}{729}$ will exprefs. the Probability required, fo that there are the Odds of 592 to I37, that the Chance affigned will happen three times together in 10 . Trials or before; and only the Odds of 41 to 40 that it does not. happen three times together in 5 .
25^{6} The Doctrine of Chances.
After having given the general Rule, it is proper to confider of Expedients to make the Calculation more eafy; but before we proceed, it is proper to take a new Cafe of this Problem: Suppofe therefore it be required to find the Probability of throwing the Chance affigned 4 times together in 21 Trials. And firft let us fuppofe the Chance affigned to be of Equality, then we fhould begin to divide Unity by $1-x-x x-x^{3}-x^{4}$; but if we confider that the Terms $x+x x+x^{3}+x^{4}$ are in geometric Progreffion, and that the Sum of that Progreffion is $\frac{x-x^{5}}{1-x}$, if we fubtract that from 1 , the remainder $\frac{1-2 x+x^{5}}{1-x}$ will be equivalent to $1-x-x x-x^{3}-x^{4}$, and confequently $\frac{1-x}{1-2 x+x^{5}}$ will be equivalent to the Quotient of Unity divided by $1-x-x x-x^{3}-x^{4}$; and therefore by that expedient, the moft complex Cafe of this Problem will be reduced to the contemplation of a Trinomial ; let us therefore begin to take fo many Terms of the Series refulting from the Divifion of Unity by the Trinomial $1-2 x+x^{5}$ as there are Units in $n-p+\mathrm{I}$, that is in $2 \mathrm{I}-4+\mathrm{I}$, or 18 , and thofe Terms will be $1+2 x+4 x^{2}+8 x^{3}+16 x^{+}+31 x^{5}+60 x^{6}+116 x^{7}$ $+224 x^{8}+432 x^{9}+833 x^{10}+1606 x^{11}+3096 x^{12}+5968 x^{13}$ $+11494 x^{14}+22155 x^{15}+42704 x^{16}+82312 x^{17}$. Now although thefe Terms may feem at firft fight to be acquired by very great labour, yet if we confider what has been explained before concerning the nature of a recurring Series, we fhall find that each Coefficient of the Series is generated from the double of the laft, fubtracting once the Coefficient of that Term which ftands 5 places from the laft inclufive ; fo that for inftance if we wanted one Term more, confidering that the laft Coefficient is 82312 , and that the Coefficient of that Term which ftands five places from the laft inclufive is 5968 , then the Coefficient required will be twice 82312 , wanting once 5968 , which will make it $1586{ }_{56}$, fo that the Term following the laft will be $158656 x^{18}$.

But to make this more confpicuous, if we take the Binomial $2 x-x^{5}$, and raife it fucceffively to the Powers, whofe Indices are $0,1,2,3,4,5,6.8 c$. and add all thofe powers together, and write againft one another all the Terms which have the fame power of x, we fhall have a very clear view of the quotient of I divided by $1-2 x+x^{5}$. Now it will ftand thus, fuppofing that a ftands for 2 .

$$
\begin{aligned}
& 1 \\
& +a x \\
& +a^{2} x x \\
& +a^{3} x^{3} \\
& +a^{4} x^{4} \\
& +a^{5} x^{5}-x^{5} \\
& +a^{6} x^{6}=2 a x^{6} \\
& +a^{7} x^{7}=3 a a x^{7} \\
& +a^{8} x^{8}=4 a^{1} x^{8} \\
& +a^{9} x^{9}=5 a^{4} x^{9} \\
& +a^{10} x^{10}-6 a^{5} x^{10}+1 x^{10} \\
& +a^{11} x^{11}-7 a^{5} x^{11}+3 a x^{11} \\
& +a^{12} x^{12}=8 a^{7} x^{12}+6 a a x^{12} \\
& +a^{13} x^{13}=9 a^{8} x^{13}+10 a^{3} x^{13} \\
& +a^{14} x^{14}=10 a^{9} x^{14}+15 a^{4} x^{14} \\
& +a^{15} x^{15}-11 a^{10} x^{15}+21 a^{5} x^{15}-1 x^{15} \\
& +a^{16} x^{16}=12 a^{11} x^{16}+28 a^{6} x^{6}-4 a x^{16} \\
& +a^{17} x^{17}-13 a^{12} x^{17}+36 a^{7} x^{17}-10 a a x^{17}
\end{aligned}
$$

When the Terms have been difpofed in that manner, it will be eafy to fum them up by the help of a Theorem which may be feen pag. 224. Now a being $=2$, and $x=\frac{1}{2}$, every one of the Terms of the firft Column will be equal to 1 , and therefore the Sum of the firft Column is fo many Units as there are Terms, which Sum confequently will be 18 ; but the Terms of the fecond Column being reduced to their proper Value, will conftitute the Series
$\frac{1}{3^{2}}+\frac{2}{3^{2}}+\frac{3}{3^{2}}+\frac{4}{3^{2}}+\frac{5}{3^{2}}+\frac{6}{3^{2}}+\frac{7}{3^{2}}+\frac{8}{3^{2}}+$ $\frac{9}{3^{2}}+\frac{10}{32}+\frac{11}{3^{2}}+\frac{12}{3^{2}}+\frac{13}{3^{2}}$ of which the Sum will be $\frac{91}{3^{2}}$; the Terms of the third Column will conftitute the Series $\frac{1}{1024}$ $+\frac{3}{1024}+\frac{6}{1024}+\frac{10}{1024}+\frac{15}{1024}+\frac{21}{1024}+\frac{28}{1024}+\frac{36}{1024}$ of which the Sum is $\frac{120}{1024}$; the Terms of the fourth Column added together are $\frac{15}{32768}$, and therefore the Sum of all Terms may be expreffed by $18-\frac{91}{3^{2}}+\frac{120}{1024}-\frac{15}{327^{68}}=\frac{500465}{32768}$ But
$25^{8} \quad$ The Doctrine of Chances.
But this Sum ought to be multiplied by $1-x$, that is, by $1-\frac{1}{2}=\frac{1}{2}$, which will make the Product to be $\frac{50046 ;}{6 ; 530}$.

Neverthelefs, this Multiplication by $1-x$, takes off too much from the true Sum, by one half of the loweft Term of each Column, therefore that half muft be added to the foregoing Sum; now all the loweft Terms of each Column put together will be $1-\frac{13}{32}+\frac{36}{1024}-\frac{10}{32768}=\frac{20008}{32798}$, of which the half $\frac{10299}{32768}$ ought to be added to the Sum $\frac{500465}{05536}$, which will make the true Sum to be $\frac{521053}{65536}$; but this is farther to be multiplied by $\frac{a^{p} x^{p}}{i^{p}}$, which by reafon that a and b are in a ratio of equality will be reduced to $x^{p}=\frac{1}{16}$; and therefore the $\operatorname{Sum} \frac{521063}{05530}$ ought to be divided by 16 , which will make it to be $\frac{521063}{1048575}$: and this laft Fraction will denote the Probability of producing the Chance affigned 4 times fucceffively fome time in 21 Trials, the Odds againft it being 5275^{13} to 5^{21063}, which is about 82 to 8 I .

But what is remarkable in this Problem is this, that the oftner the Chance affigned is to be produced fucceffively, the fewer Columns will be neceffary to be ufed to have a fufficient Approximation, and in all high Cafes, it will be fufficient to ufe only the firft and fecond, or three at moft, whereof the firft is a geometric Progreffion, of which a very great number of Terms will be as eafily fummed up, as a very fmall number; and the fecond Column by what we have faid concerning the nature of a recurring Series, as eafily as the firf, and in fhort all the Columns.

But now 'tis time to confider the Cale wherein a to b has a ratio of inequality; we had faid before that in this Cafe we ought to divide Unity by $1-x-a x x-a a x^{3}-a^{3} x^{4} \ldots \ldots-a^{p-1} x^{p}$, but all the Terms after the firft which is 1 , conftitute a geometric Progreffion, of which the firft is x, and the laft $a P^{p-1} x p$, and therefore the Sum of that Progreffion is $\frac{x-a^{p} x^{p+1}}{1-a x}$, and this being fubtracted from Unity, the remainder will be $1-a x+a \neq x f+1$, and

$$
z_{1-a x}^{x}
$$

therefore Unity being divided by the Series above-written will be
will be $\frac{1-a x}{1-m x-a^{p} x+1}$, and therefore if we raife fucceffively $m x$ - apxp+1 to the feveral Powers denoted by $0,1,2,3,4,5,6$, \&c. and rank all thofe Powers in feveral Columns, and write againft one another all the Terms that have the fame power of x, we fhall be able to fum up every Column extended to the number of Terms denoted by $n-p+1$, which being done, the whole muft be multiplied by 1 - $a x$, and to the Sum is to be added the Sum of the lowert Term of each Column multiplied by $a x$.

But if it be required to affign what number of Games are neceffary, in all Cafes, to make it an equal Chance whether or not p Games will be won without intermiffion, it may be done by approximation, thus; let $\frac{a^{+b^{p}}-a^{p}}{a^{p}}$ be fuppofed $=q$, and let $\frac{a+b}{b}-\frac{a^{p}}{b \times \bar{a}^{b} p-1}$ be fuppofed $=r$, then the number of Games required will be expreffed by $\frac{7}{10} q r$; thus fuppofing $a=\mathrm{r}, b=\mathrm{I}, p=6$, then the number of Games would be found between 86 and 87 ; but if a be fuppofed $=\mathrm{I}$, and $b=2$, ftill fuppofing $p=6$, the number of Games requifite to that effect would be found to be between 763 and 764 ; but it is to be obferved, that the greater the number p is, fo much the more exact will the Solution prove.

A

TREATISE 0 F

ANNUITIES
 0 N
 L I V E S:

Dedicated to
The Right Honourable
GEORGE Earl of MACCLESFIELD
President of the Royal Society.

$\begin{array}{lllllll}P & R & E & F & A & C & E\end{array}$ TOTHE

Second E D I T I O N.

DR. Halley publifed in the Philofophical Tranfactions, N o. 196. an Efay concerning the Valuation of Lives; it was partly built upon five Years Obfervation of the Bills of Mortality taken at Breflaw, the Capital of Silefia, and partly on bis own Calculation.

$P \quad R \quad E \quad F \quad A \quad C \quad E$.

Altho' be bad thereby confirmed the great Opinion wobich tbe World entertained of bis Skill and Sagacity, yet be woas Senfible, that bis Tables and Calculations were fufceptible of farther Improvements; of this be expreffed bis Senfe in the following Words; Were this Calculus founded on the Experience of a very great Number of Years, it would very well be worth the while, to think of Methads to facititate the Computation of two, three or more Lives.

From whence it appears, that the Table of Obfervations being only the Refult of a few Years Experience, it was not fo entirely to be depended upon, as to make it the Foundation of a fixed and unalterable Valuation of Annuities on Lives; and that even admitting fuch a Table could be obtained, as might be grounded on the Experience of a great Number of Years, Aill the Method of applying it to the Valuation of feveral Lives, would be extremely laborious, confidering the vaft Number of Operations, that would be requijte to combine every Year of each Life with every Year of all the other Lives.

The Subject of Annuities on Lives, bad been long neglected by me, partly prevented by other Studies, partly wanting the neceffary means to treat of it as it deferved: But two or tbree Years after the Publication of the firft Edition of my Doctrine of Chances, I took the Subject into Confideration; 'and confulting Dr. Halley's Table of Obfervations, I found that the Decrements of Life, for confiderable Intervals of Time, were in Aritbmetic Progrefion; for Inflance, out of 646 Perfons of twelve Yaars of Age, there remain 640 after one Year; 634 after two Years; 628, 622, 616, 610, 604, 598, 592, 586, after $3,4,5,6,7,8,9,10$ Years refpectively, the common Difference of thofe Numbers being 6 .

Examining afterwards other Cafes, I found that the Decrements of Life for Several Years were fill in Aritbmetic Progreffion; which may be obferved from the Age of 54, to the Age of 71, where the Difference for 17 Years together, is conftantly 10 .

After baving thorougbly examined the Tables of Obfervation, and difcovered that Property of the Decrements of Life, 1 was inclined to compofe a Table of the Values of Annuities on Lives, by keeping clofe to the Tables of Oblervation; which would bave been done woith Eafe, by taking in the wobole Extent of Life, feveral Intervals whether equal or unequal: However, before I undertook the Tajk, I tried what

$\begin{array}{lllllll}P & R & E & F & A & C\end{array}$

soould be the Refult, of fuppofing thofe Decrements uniform from the Age of Twelve; being fatisfied that the Exceffes arifing on one fide, would be nearly compenfated by the Defects on the other ; then comparing my Calculation with that of Dr. Halley, 1 found the Conclufion fo very little different, that I thought it fuperfluous to join together feveral different Rules, in order to compofe a fingle one: I need not take notice, that from the Time of Birth to the Age of Twelve, the Probabilities of Life increafe, ratber than decreafe, wbich is a Renfon of the apparent Irregularity of the Tables in the beginning.

Anotber thing was neceflary to my Calculation, which was, to fuppofe the Extent of Life confuned to a certain Period of Time, which I fuppofe to be at 86 : What induced me to affume that Suppofition was I / t, That Dr. Halley terminates bis Tables of Obfervations at the $84^{\text {th }}$ Year ; for altho' out of 1000 Cbildren of one Year of Age, there are twenty, who, according to Dr. Halley's Tables, attain to the Age of 84 Vears, this Number of 20 is inconfiderable, and would fill bave been reduced, if the Obfervations bad been carried two Years fartber. 2°. It appears from the Tables of Graunt, who printed the firft Edition of his Book above 80 Years ago, that out of 100 nerv-born Cbildren, there remained not one after 86 Years; tbis was deduced from the Obfervations of Several Years, both in the City and the Country, at a Time when the City being lefs populous, there was a greater Facility of coming at the Truth, tban at prefent. 3°. I was farther confirmed in my Hypotbefis, by Tables of Obfervation made in Switzerland, about the Beginning of this Century, wherein the Limit of Life is placed at 86 : As for webat is alledged, that by fome Obfervations of late Years, it appears, that Life is carried to 90, 95, and even to 100 Years; I am no more moved by it, than by the Examples of Parr or Jenkins, the firft of whom lived 152 Years, and the other 167 . To this may be added, that the Age for purchafing Annuities for Life, Seldom exceeds 70, at which Term, Dr. Halley ends bis Tables of the Valuation of Lives.

The greatef Difficulty that occurred to me in this Speculation, was to invent practical Rules that might eafily be applied to the Valuation of feveral Lives; which, bowever, was bappily overcome, the Rules being fo eafy, that by the Help of them, more can be performed in a Quarter of an Hour, than by any Method before extant, in a Quarter of a Year.

Since the Publication of my firfl Edition, which was in 1724,1 made fome Improvements to it, as may be feen in the fecond Edition of my Doctrine of Chances; but this Edition of the Annuities bas many Advantages over the former, and that in refpect to the Difpofition of the Precepts, the Concifenefs of the Rules, the Multiplicity of Problems, and Ufefulnefs of the Tables I bave invented.

Before I make an End of this Preface, I think it proper to obferve, that altho' I bave given Rules for finding the Value of Annuities for any Rate of Intereft, yet I bave confined myfelf in my Tables, to the feveral Rates of 4, 5 and 6 per Cent. which may be interpreted, as if I thought it reafonable, that when Land Scarce produces three and a balf per Cent. and Soutb-Sea Annuities barely that Intereft, yet the Purcbafer of an Annuity Joould make 4 per Cent. or above; but thofe Cafes can bardly admit of Comparifon, it being well known, that Land in Fee-fimple procures to the Proprietor Credit, Honour, Reputation, and other Advantages, in confideration of which, be is contented with a fmaller Income. As to the Value of Soutb-Sea Annuities, it bas its Foundation on the Punctuality of Payments, and on a Parliamentary Security; but Annuities on Lives, bave not the former Security, and feldom the latter.

It was found neceffary, however, in a fubfequent Edition, to add the Tables of 3 and $3^{\frac{1}{2}}$ per Cent. Intereft.

Of ANNUITIES on LIVES.

Part I. containing the Rules and Examples.

BEFOREI come to the Solution of Queftions on Lives, it will be neceffary to explain the Meaning of fome Words which I hall often have occafion to mention.
1°. Suppofing the Probabilities of Life to decreafe in Arithmetic Progreffion in fuch manner, as that fuppofing, for Inftance, 36 Perfons each of the Age of 50, if after one Year expired there remain but 35 , after two 34 , after three 33 , and fo on; it is very plain that fuch Lives would neceffarily be extinct in 36 Years, and that therefore the Probabilities of living $1,2,3,4,5$, $\mathcal{E}^{\circ} c$. Years from this Age of 50 would fitly be reprefented by the Fractions $\frac{35}{30}, \frac{34}{36}, \frac{33}{36}, \frac{32}{36}, \frac{31}{36}, \mathcal{E}^{c}$. which decreafe in Arithmetic Progreffion.

I will not fay that the Decrements of Life are precifely in that Proportion; ftill comparing that Hypothefis with the Table of Dr. Halley, from the Obfervations made at Breflaze, they will be found to be exceedingly approaching.
2°. I call that the Complement of Life, which remains from the Age given, to the Time of the Extinction of Life, which will be at 86, according to our Hypothefis. Thus fuppofing an Age of 50 , becaufe the Difference between 50 and 86 is 36 , I call 36 the Complement of Life.
3°. I call that the Rate of Intereft which is properly the Amount of one Pound, put out at Intereft for one Year ; otherwife one Pound joined with the Intereft it produces in one Year : thus fuppofing Intereft at 5 per Cent the Intereft of $1 l$. would be 0.05 , which baing joined to the Principal 1, produces 1.05; which is what I call the Rate of Interefl.

PR O B L E M I.

Suppofing the Probabilities of Life to decreafe in Arithmetic Progreffion, to find the Value of an Ammity upon a Life of an Age given.

Solution.

Let the Rent or Annuity be fuppofed $=\mathrm{I}$, the Rate of Intereft $=r$, the Complement of $\mathrm{Life}=n$, the Value of an Annuity certain to continue M m during
during n Years $=P$, then will the Value of the Life be $\frac{1-\frac{r}{n} P}{r-1}$, which is thus expreffed in Words at length;

Take the Value of an Annuity certain for fo many Years, as are denoted by the Complement of Life; muitiply tbis Value by the Rate of Intereft, and divide the Product by the Complement of Life, then let the 2uotient be fubtracted from Unity, and let the Remainder be divided by the Interef of I l. then this laft Quotient will exprefs the Value of an Annuity for the Age given.

Thus fuppofe it were required to find the prefent Value of an Annuity, of I l. for an Age of 50 , Interett being at 5 per Cent.

The Complement of Life being 36, let the Value of an Annuity certain, according to the given Rate of Intereft, be taken out of the Tables annexed to this Book, this Value will be found to be 16.5468:

Let this Value be multiplied by the Rate of Intereft 1.05 , the Product will be 17.3741.

Let this Product be divided by the Complement of Life, viz. by 36, the Quotient will be 0.4826 .

Subtract this Quotient from Unity, the Remainder, will be, 0.5174.

Laftly, divide this Quotient by the Intereft of I l. viz. by 0.05 , and the new Quotient will be 10.35 ; which will exprefs the Value of an Annuity of 1% or how many Years Purchafe the faid Life, of 50 is worth.

And in the fame manner, if Intereft of Money was at 6 per Cent. an Annuity upon an Age of 50 , would be found worth $9 \cdot 49$ Years, Purchafe.

But as I have annexed to this Treatife the Values of Annuities for an Intereft of $3,3 \frac{1}{2}, 4,5$, and 6 per Cent. it will not be neceffary to calculate thofe Cafes, but fuch only as require a Rate of Intereft higher or lower, or intermediate ; which will feldom happen, but in cafe it does, the Rule may eafily be applied.

P R O B L E M. II.

The V alues of two fingle Lives being given, to find the Value of an Annuity granted for the Time of their joint continuance.

Solútron.

Let M be the Value of one Life, P the Value of the other, r the Rate of Intereft; then the Value of an Annuity upon the two joint Lives will be $\frac{M P}{M+P-r-1} \frac{M P}{}$, in Words thus;

Multiply together the Values of the two Lives, and referve the Product.
Let that Product be again multiplied by the Interefl of 1 1. and let that new Product be fubtracted from the Sum of the Values of the Lives, and referve the Remainder.
Divide the firlt Quantity referved by tbe fecond, and the Quotient woill exprefs the Value of the two joint Lives.
Thus, fuppofing one Life of 40 Years of Age, the other of 50 , and Intereft at 5 per Cent. The Value of the firt Life will be found in the Tables to be i 1.83 , the Value of the fecond 10.35 , the Product will be 122.4405 , which Product muft be referved.
Multiply this again by the Intereft of $1 l$. viz. by 0.05 ; and this new Product will be 6.122025 .
This new Product being fubtracted from the Sum of the Lives which is 22.18 , the Remainder will be 16.057975 , and this is the fecond Quantity referved.
Now dividing the firft Quantity referved by the fecond, the Quotient will be 7.62 nearly; and this exprefies the Values of the two joint Lives.

If the Lives are equal, the Canon for the Value of the joint Lives will be fhortened and be reduced to $\frac{M}{2-r-1 \times M}$, which in words may be thüs expreffled;

Take the Value of one Life, and referve that Value.
Mültiply this Value by the Intereft of i1. and then Subtraict the Product from the Numiber 2, and referve the Remainder.

Divide the firf? 2ilantity referved by the fecond, and the Quotient rwill exprefs the Value of the two equal joint Lives.
Thus, fuppofing each Life to be 45 Years of Age, and Intereft at 5 per Cent.

The Value of one Life will be found to be in, i4, the firf Quantity referved.
This being multiplied by 0.05 the Intereft of 1 l the Product will be 0.557 .

This Product being fubtracted from the Number 2, the Remainder will be 1.443 , the fecond Quantity referved.

Divide

Divide the firt Quantity referved viz. II.I4; by the fecond, viz. I.443, and the Quotient 7.72 will be the Value of the two joint Lives, each of 45 Years of Age.

PROBLEM III.

The Values of three fingle Lives being given, to find the Value of an Annuity for the Time of their joint continuance.

Solution.

Let $M, P, 2$, be the refpective Values of the fingle Lives, then the Value of the three joint Lives will be $\frac{M P+M Q Q}{M P+P Q-2 a M P Q}$, fuppofing d to reprefent the Intereft of $\mathrm{I} l$. in words thus;

Multiply the Values of the fingle Lives together, and referve the Product.

Let that Product be multiplied again by the Intereft of 11 . and let the Double of that new Product be fubtracted from the Sum of the feveral Products of the Lives taken two and two, and referve the Remainder.

Divide the firft 2uantity referved by the fecond, and the थuotient will be the Value of the tbree joint Lives.

Thus, fuppofing one Life to be worth I 3 Years Purchafe, the fecond 14, the third 15, and Intereft at 4 per Cent. the Product of the three Lives will be 2730 , which being multiplied by the Intereft of 1 l. viz. by 0.04 , the new Product will be 109.20 , whereof the double is 218.40 : Now the Product of the firf Life by the fecond is 182 ; the Product of the firt Life by the third is 195 ; and the Product of the fecond Life by the third is 210 , the Sum of all which is 587 ; from which fubtracting the Number 218.40 found above, the Remainder will be 368.60 , by which the Product of the three Lives, viz. 2730 being divided, the Quotient 7.41 will be the Value of the three joint Lives.

But if the three Lives were equal, the general Expreffion of the Value of the joint Lives will be much fhorter: for let M reprefent the. Value of one Life, d the Intereft of $\mathrm{I} l$. then the Value of the three joint Lives will be $\frac{M}{3-2 a a_{1}}$, in Words thus;

Take the Value of one Life, and referve it, multiply this Value by the Interefl of I 1. and double the Product.
Subtract tbis double Product from the number 3, and referve the Remainder.

Divide the firft Quantity referved by the fecond, and the 2uotient will be the Value of the tbree joint Lives.
Thus, fuppofing three equal Lives each worth 14 Years Purchafe, referve the Number I4.
Multiply this by 0.04 , Interef of $1 l$. the Product will be 0.56 , which being doubled, will be I.12.
This being fubtracted from the Number 3, the Remainder will. be 1.88 , which is the fecond Quantity to be referved.

Divide 14 , the firft Quantity referved by the fecond I .88 , and the Quotient 7.44 will be the Value of the three joint Lives.
From the two laft Examples it appears, that in eftimating the Values of joint Lives, it would be an Error to fuppofe that they might. be reduced to an Equality, by taking a Mean Life betwixt the longeft and fhorteft, for altho' 14 is a Medium betwixt I_{3} and I_{5}, yet an Annuity upon thofe three joint Lives was found to be 7.41 , whereas fuppofing them to be each 14 Years Purchafe, the Value is 7.44 ; it is true that the Difference is fo fmall, that it might be neglected, yet this arifes meerly from a near Equality in the Lives; for if there. had been a greater Inequality, the Conclufion would bave confiderably varied.
Before I come to the fourth Problem, I think it proper to explain the Meaning of fome Notations which I make ufe of, in order to be as clear and concife as I can.
I denote the Value of an Annuity upon two joint Lives, whofe fingle Values are M and P by $\overline{M P}$, which ought carefully to bediftinguifhed from the Notation MP; this laft denoting barely the Product of one Value multiplied by the other, whereas $\overline{M P}$ ftands for what was denoted in our fécond Problem by $\frac{M P}{M+P-\overline{r-1} M P}$.

In the fame manner, the Value of an Annuity upon the three: joint Lives whofe fingle Values are $M, P, 2$, is denoted by $\overline{M P \overline{2}}$. which is equivalent to what has been expreffed in the third Problem by: $\frac{M P Q}{M P+M 2+P Q-2 d M P Q}$.

This being premifed, I proceed to the fourth Problem.

PROBLEM IV.

The Values of two fingle Lives being given, to find the Value of an Annuity upon the longeft of them, that is, to continue fo long as either of them is in being.

Solution.

Let M be the Value of one Life, P the Value of the other, $\overline{M P}$ the Value of the two joint Lives, then the Value of the longeft of the two Lives will be $M+P-\overline{M P}$. In Words thus;

From the Sum of the Values of the fingle Lives, fubtract the Value of the joint Lives, and the Remainder will be the Value of the longeft.

Let us fuppofe two Lives, one worth 13 Years Purchafe, the other 14, and Intereft at 4 per Cent. The Sum of the Values of the Lives is 27 , the Value of the two joint Lives by the Rules before given, will be found 9.23 . Now, fubtracting 9.23 from 27 , the Remainder 17.77 is the Value of the longeft of the two Lives.

If the two Lives are equal, the Operation will be fomething fhorter.

But it is proper to obferve in this place, that if feveral equal Lives are concerned in an Annuity, I commonly denote one fingle Life by M^{\prime}, two joint Lives by $M^{\prime \prime}$, three joint Lives by $M^{\prime \prime \prime}$, and fo on ; fo that the Rule for an Annuity to be granted till fuch Time as either of the equal Lives is in being may be expreffed by $2 M^{\prime}-M^{\prime \prime}$.

PR O B L E M V.

The Values of three fingle Lives being given, to find the V alue of an Annuity upon the longeft of them.

Solution.
Let $M, P, 2$, be the Values of the fingle Lives, $\overline{M P}, \overline{M Q}, \overline{P Q}$, the Values of all the joint Lives combined two and two, $\overline{M P Q}$ the Value of three joint Lives, then the Value of an Annuity upon the longeft of them is $M+P+2-\overline{M P}-\overline{M 2}-\overline{P Q}+\overline{M P 2}$, in Words thus;

Take the Sum of the three fingle Lives, from which Sum fubtract the Sum of all the joint Lives combined two and two, then to the Remainder add the Value of the three joint Lives, and the Refult will be the Value of the longeft of the three Lives.

Thus,

Thus, Suppofing the fingle Lives to be 13, 14, and 15 Years Purchafe, the Sum of the Values will be 42 ; the Values of the firft and fecond joint Lives is 9.24 , of the firft and third 9.05 , of the fecond and third 10.18 , the Sum of all which is 29.06 which being fubtracted from the Sum of the Lives found before, viz. 42 , the Remainder will be 12.94, to which adding the Value of the three joint Lives 7.4 I , the Sum 20.35 will be the Value of the longeft of the three joint Lives.

But if the three Lives are equal, the Rule for the Value of the Life that remains laft is $3 M^{\prime}-3 M^{\prime \prime}+M^{\prime \prime \prime}$.

Of REVERSIONS.

PR O B L E M VI.

Suppofe A is in Poffelfon of an Annuity, and that B after the Deceafe of A is to bave the Annuity for Bim, and bis Heirs for ever, to find the prefent Value of. the Reverfion.

Solution.

Let M be the Value of the Life in Poffefion, r the Rate of Interef, then the prefent Value will be $\frac{1}{r-1}-M$, that is, from the Value of the Perpettuity, fubtract the Value of the Life in Poffifion, and the Remainder will be the Value of the Rever fion.

Thus, Suppofing that A is 50 Years of Age, an Annuity upon. his Life, Intereft at 5 per Cent. would be 8.39, which being fubtracted from the Perpetuity 20 , the Remainder will be 11.6 I , which is the prefent Value of the Expectation of B.

In the fame manner, fuppofing that C were to have an Annuity for him and his Heirs for ever, after the Lives of A and B, then from the Perpetuity fubtracting the Value of the longeft of the two Lives of A and B, the Remainder will exprefs the Value of C 's. Expectation.

Thus, Suppofing the Ages of A and B be 40 and 50 ; the Value of an Annuity upon the longeft of thefe two Lives would be found by the $4^{\text {th }}$ Problem to be 14.56 ; and this being fubtracted from the Perpetuity 20, the Remainder is 5.44 , which is the Value of C 's Expectation, and the Rule will be the fame in any other Cafe that may: be propofed.

P R O B L E M VII.

Suppofing that A is in Poffeflion of an Annuity for bis Life, and that B after the Life of A, 乃bould bave an Annuity for bis Life only; to find the Value of the Life of B after the Life of A.

This Cafe ought carefully to be diftinguifhed from the Cafe of the 6th Problem ; for in that Problem, altho' the Expectant B fhould die before A, fill the Heirs of B have the Reverfion; but in the Cafe of the prefent Problem, if B dies before A, the Heirs of B have no Expectation.

Solution.

Let M be the Value of the Life of the prefent Poffeffor, P the Value of the Life of the Expectant, then the Value of his Expectation is $P-\bar{M} P$. In Words thus;

From the prefent Value of the Life of B , fubtract the prefent Value of the joint Lives of B and A , and the Remainder will be the Value of B's Expectation.

The Reafon of which Operation is very plain, for if B were now to begin to receive the Annuity, it would be worth to him the Sum P in prefent Value; but as he is to receive nothing during the joint Lives of himfelf and A, the prefent Value of their two joint Lives ought to be fubtracted from the Value of his own Life.

PR O B L E M VIII.

To find the Value of one Life after two.

Thus, Suppofe A in Polfefrion of an Annuity for bis Life, that B is to bave bis Life in it after A , and that C is likerwife to bave bis Life in it after B, but So that B dying before A, C fucceeds A immediately; to find the Value of C's Expectation.

Solution.
Let M, P, \mathcal{Q}, be the refpective Values of the Lives of A, B, C, then the Value of C 's Expectation is $2-\overline{M 2}+\overline{M P 2}$, which in Words is thus expreffed;

From the prefent Value of the Life of C, fubtract the Sum of the joint Lives of bimfelf and A , and of bimfelf and B , and to the Remainder add the Sum of the three joint Lives, and the Refult of thefe Operations will exprefs the prefent Value of the Expectation of C .

P R O B L E M IX.

If A, B, C agree among themfelves to buy an Annuity to be by them equally divided, whilft they live together, then after the Deceafe of one of them, to be equally divided between the two Survivors, then to belong entirely to the laft Survivor for bis Life; to find what each of them ougbt to contribuie towards the Purchafe.

Solution.

Let $M, P, 2$, be the refpective Values of the Lives of A, B, C, then what A is to contribute, is

$$
M-\frac{1}{2} \overline{M P}+\frac{1}{3} M P 2
$$

What B^{2} is to contribute, is

$$
\begin{aligned}
& P-\frac{1}{2} \frac{P M}{P M}+\frac{1}{3} \overline{M P Q} \\
& =\frac{1}{2} P Q
\end{aligned}
$$

What C is to contribute, is

$$
2-\frac{1}{2} \overline{2 M}+\frac{1}{3} \overline{M P} 2
$$

In Words thus;
From the Value of the Life of A, Jubtract the balf Sum of the Values of the joint Lives of bimpelf and B , and of bimfelff and C , and to the Remainder add $\frac{1}{3}$ of the Value of the three joint Lives, and the Sum will be wobat A is to contribute towards the Purchafe.
In like manner, from the Value of B^{\prime} 's Life fubtract the half Sum of the Values of the joint Lives of himfelf and A, and of himfelf and C, and to the Remainder add $\frac{1}{3}$ of the Value of the three juint Lives, and the Sum will be what B is to contribute.

27.4 The Doctrine of Chances applied

And again, from the Value of the Life of C, fubtract the half Sum of the Values of himfelf and A, and of himfelf and B; then to the Remainder add $\frac{t}{3}$ of the Values of the three joint Lives, and this laft Operation will fhew what C is to contribute.

PROBLEM X.

Suppofing three equal Lives of any Age given, for Inftance 30, and that upon the Failing of any one of them, that Life Jall be immediately replaced, and I then receive a Suin f agreed upon, and that to Perpetuity for me and my Heirs; what is the prefent Value of that Expectation, and at what Intervals of Time, one with another, may I expect to receive the Laid Sum?

Solution.

Imagine that there is an Annuity of $1 l$. to be received as long as the three Lives are in being, and that the Prefent Value is $M^{\prime \prime \prime}$, which Symbol we make ufe of to reprefent the Prefent Value of an Annuity upon three equal joint Lives; now, fince each Life is, fuppofed to be 3° Years of Age, and that the Rate of Intereft is 5 per Cent. we Thall find, by following the Directions given in Prob. III. that the Prefent Value of the three joint Lives is $7.64=M^{\prime \prime \prime}$; this being fixed; the Prefent Value of all the Payments to be made to Eternity at equal Intervals of Time, will be $\frac{1-d M^{\prime \prime \prime}}{d M^{\prime \prime}} \times \int$, where the Quantity d fignifies the Intereft of I l. In words thus;

Multiply the Prefent Value of the three joint Lives, viz. 7.64, by tbe Intereft of 1 l. which in this Cafe is 0.05 , and that Product, which is 0.382 , muft be referved.

Subtract this Quantity from Unity, and the Remainder, viz. 0.618 being divided by the Quantity referved, the 2uotient will be 1.62 , and this being multiplied by the Sum f, which we may fuppofe 1001. the Produst reill be 162 1. and this is the prefent Value of all the Payments. that will be made to Eternity, at equal Intervals of Time upon the failing of a Life, which is to be immediately replaced.

As for the Intervals of Time after which thofe Replacements will be made, they may be found thus;

Look in the feventh of our Tables for the Number 7.64, which is the Value of the three joint Lives, and over againft it will be found the Number anfwering, which is between 9 and io; and fo it may be faid that the Replacements will be made at every Interval of about 9 or ro Years.
But that Interval may be determined a littlè more accurately, by help of a Table of Logarithms, by taking the Logarithm of the Quantity $\frac{1}{1-d M^{\prime \prime \prime}}$ and dividing it by the Logarithm of r.

The Logarithm of $\frac{1}{1-d M^{\prime \prime}}$ is 0.2090115 ; the Logarithm of r is 0.0211893 ; and the firft being divided by the fecond, the Quotient is 9.86 , which fhews that the Replacements will be made at Intervals a little more than $9 \frac{3}{4}$ Years.

PROBLEMXI.

Suppofing, as before, three equal Lives of 30 , and that the Lives are not to be renewed, till after the failing: of any two of them, and that a Sum p is then to be received, and that perpetually, after the failing of two Lives, what is the prefent V alue of that Expectation?

SOLUTION.

Make $3 M^{\prime \prime}-2 M^{\prime \prime \prime}=A$, let the Intereft of $\mathrm{I} l$. be $=d$, then the prefent Value of that Expectation will be $\frac{1-d A}{d A} \times p$.

But to know the Intervals of Time after which the Lives will be filled up, take the Logarithm of the Quantity $\frac{1}{1-d A}$, and divide it by the Logarithm of r.

The Value of a fingle Life of 30 , Intereft at 5 per Cent. is found in our Tables to be 13 Years Purchafe, the Value $M^{\prime \prime}$ of two joint Lives by Problem II. is 9.63 ; and the Value $M^{\prime \prime \prime}$ of three joint Lives by Problem III. is 7.64 ; then $3 M^{\prime \prime}-2 M^{\prime \prime \prime}$, or the Difference between the Triple of two joint Lives, and the Double of three joint Lives will be $13.59=A$, then $\frac{1-d A}{d A} \times p$ will be found to be $0.473 p$; and the Intervals of Time will be 23.32 , that is, nearly $23 \frac{1}{3}$ Years.

PR O B L E M XII.

Suppofing fill the Lives to be 30, and that they are not to be renewed till after the Extinction of all three, and that a Sum q is then to be received, and that perpetually after every Renewal, what is the prefent Value of that Expectation?

SOLUTION.
Make $3 M^{\prime}-3 M^{\prime \prime}+M^{\prime \prime \prime}=B$, then the prefent Value of that Expectation will be $\frac{1-d B}{a B} \times q$; here B will be found to be 17.76 , and confequently $\frac{1-d B}{d B} \times q$ will be $=0.12 \mathrm{I} \times q$.

And the Intervals of Time will be the Logarithm of the Quantity $\frac{1}{1-d B}$ divided by the Logarithm of r, which in this Cafe would be 44.87 , that is, nearly 45 Years.

Corollary.

Hence it will be eafy for the Proprietor of the Lives, to find which is moft advantageous to him, to fill up a Life as foon as it is vacant, or not to fill up before the Vacancy of two, or to let them all drop before the Renewal.

> RemARK.

It is not to be imagined that if Intereft of Money was higher or lower than 5 per Cent. the Intervals of Time after which the Renewals are made, would be the fame as they are now, for it will be found, that as Intereft is higher, the Intervals will be fhorter; and as it is lower, fo the Intervals will be longer ; yet one might make it an Objection to our Rules, that the length of Life would thereby feem to depend upon the Rate of Intereft. To anfwer this Difficulty, it muft be obferved, that the calculating of Time imports no more, than that confidering the Circumftances of the Purchafer and the Proprietor of the Lives, in refpect to the Rate of Intereft agreed upon, and the Sum to be given upon the Renewal of a Life, or Lives, the Proprietor makes the fame Advantage of his Money, as if he had agreed with the Purchafer, that he fhould pay him a certain Sum of Money at equal Intervals of Time, for redeeming the

Rifque which he the Purchafer runs of paying that Sum when the Life or Lives drop: but the real Intervals of Time will be fhewn afterwards.
Altho' it feldom happens that in Contracts about Lives, any more than three are concerned, yet I hope it will not be difpleafing to our Readers to have this Speculation carried a little farther.

But as general Rules are beft inculcated by particular Examples, I fhall take the Cafe of five Lives, and exprefs the feveral Circumflances of them in fuch manner, as that they may be a fure Guide in all other Cafes of the fame kind, let the Number of Lives be what it will; let therefore the following Expreflions be written,

$$
\begin{aligned}
& M^{\prime \prime \prime \prime \prime} \\
& \begin{array}{r}
10 M^{\prime \prime \prime}-15 M^{\prime \prime \prime \prime}+6 M^{\prime \prime \prime \prime \prime \prime} \\
10 M^{\prime \prime}-20 M^{\prime \prime \prime}+15 M^{\prime \prime \prime \prime}-4 M^{\prime \prime \prime \prime \prime} \\
10 M^{\prime \prime}+10 M^{\prime \prime \prime}-5 M^{\prime \prime \prime \prime}+1 M^{\prime \prime \prime \prime}
\end{array} \\
& 5 M^{\prime}-10 M^{\prime \prime}+10 M^{\prime \prime \prime}-{ }_{5} M^{\prime \prime \prime \prime}+1 M^{\prime \prime \prime \prime \prime \prime}
\end{aligned}
$$

The firft Term $M^{\prime \prime \prime \prime \prime}$ reprefents properly the prefent Value of an Annuity upon five equal joint Lives, but from thence may be deduced the Time of their joint continuance, or the Time in which it may be expected that one of them will fail, it being as I have faid before, the Logarithm of $\frac{1}{1-d M^{m \cdots \prime}}$ divided by the Logarithm of r : however, for fhortnefs fake, I call for the prefent that Expreffion the Time.

The two next Terms, $5 M^{\prime \prime \prime \prime}-4 M^{\prime \prime \prime \prime}$, reprefent the Time in which two of the Lives will fail.

The three next Terms, $10 M^{\prime \prime \prime}-15 M^{\prime \prime \prime \prime}+6 M^{\prime \prime \prime \prime}$, reprefent the Time in which three out of the five Lives will fail.

The four next, $10 M^{\prime \prime}-20 M^{\prime \prime \prime}+15 M^{\prime \prime \prime \prime}-4 M^{\prime \prime \prime \prime \prime}$, repreferit the Time in which four out of the five Lives will fail.
The five next, $5 M^{\prime}-10 M^{\prime \prime}+10 M^{\prime \prime \prime}-5 M^{\prime \prime \prime \prime}+1 M^{\prime \prime \prime \prime \prime}$, reprefent the Time in which all the five Lives will be extinct.

Now the Law of the Generation of the Co-efficients is thus.
1°. Take all the Terms which are affected with the Mark $M^{\prime \prime \prime \prime \prime \prime}$, beginning from the uppermof, with the Co-efficients 1-4+6$4+1$, which are the Terms of the Binomial $1-1$, raifed to the fourth ${ }_{P}^{4}$ Power, which is lefs by one than the Number of Lives concerned,
2°. Take the Terms which are affected with the Mark $M^{\prime \prime \prime}$, and prefix to them in order, the product of the Number 5 by the Coefficients $1-3+3-1$, which are the Terms of the Binomial $1-1$ raifed to its Cube, that is, to a Power lefs by two than the Number of Lives concerned.
3°. Take all the Terms which are affected with the Mark $M^{\prime \prime \prime}$, and prefix to them in order, the Product of the Number 10, multiplied by the Co-efficients $1-2+1$, which are the Terms of the Binomial I - r raifed to its Square, that is, to a Power lefs by three than the Number of Lives concerned.
4°. Take all the Terms which are affected with the Mark $M^{\prime \prime}$, and prefix to them the product of the Number 10, multiplied by the Terms of the Binomial $\mathrm{I}-\mathrm{I}$, raifed to the Power whofe Index is I , that is to a Power lefs by four than the Number of Lives concerned.
5°. Take all the Terms which are affected with the Mark M^{\prime}, and prefix to them the Product of the Number 5 , multiplied by the Binomial I-I, raifed to a Power lefs by 5 than the Number of Lives concerned; which in this Cafe happening to be nothing, or o , degegenerates barely into Unity.

As for the Multiplicators, conceiving that the Multiplicator of the firft Term $M^{\prime \prime \prime \prime \prime}$ is I , all the Multiplicators will be $1,5,10,10,5$, which are all, except the laft, the Coefficients of the Binomial $I+1$, raifed to its fifth Power, that is, to a Power equalling the Number of all the Lives.
N. B. The Exception here given, does not fall upon the Number 5, but upon the laft Term of the fifth P'ower, $1+5+10+10+5+1$, which laft I is rejected.

Of SUCCESSIVELIVES.

P R O B L E M XHI.

If A enjoys an Annuity for bis Life, and at bis Deceaje bas the Nomination of a Succeffor B, who is alfo to enjoy the Annuity for his Life, to find the prefent Value of the two fucceffive Lives.

> Solution.

Let the Values of the Lives be M and P; let d be the Intereft of 1.. then the Value of the two fucceffive Lives will be $M+P-d M P$.

But if the Succeffor B was himfelf to have the Nomination of a Life 2; then the Value of the three fucceffive Lives would by $M+P+$ $2-d \times \overline{M P}+M 2+P \varrho+d d \times M P 2$

But before I proceed, it is proper to obferve that the Expreffions. $M P, M 2, P 2$, and $M P 2$, fignify barely Products, which is conformable to the ufual Algebraic Notation; this I take notice of, for fear thofe Expreffions fhould be confounded with others that I have made ufe of before, viz. $\overline{M P}, \overline{M 2}, \overline{P 2}$, and $\overline{M P 2}$, which denoted joint Lives.

But to comprife under one general Rule all the poffible Cafes that may happen about any Number of fucceffive Lives, it will be proper to exprefs it in Words at length, thus;

From the Sum of all the Lives, fubtract the Sum of the Products of all the Lives combined two and two, which Sum of Products before they are fubtructed, ought to be multiplied by the Intereft of I 1.

To this add the Sum of the Products of all the Lives taken three and tbree, but multiplied again by the Square of the Intereft of 11.

From this fubtract the Sum of the Products of all the Lives taken four and four, but multiplied again by the Cube of the Intereft of rl . and fo. on by alternate Additions and Subtractions fill obferving that if there was. occafion to take the Lives five and five, fix and fix, \&xc. the Intereft of 11. ought to be raifed to the 4 th Power, and to the 5th, and So on.

But all thofe Operations would be very much contracted, if the Lives to be nominated were always of the fame Age, for Inftance 30 : for fuppofe M to be the Value of an Annuity on an Age of 30 , and d to be the Intereft of $I l$. then the prefent Value of all the fucceffive Lives, of which the Number is n, would be $\frac{1-1-d M}{d}$. In Words thus;

Multiply the Value of one Life by the Intereft of I 1. let the Product be fubtracted from Unity, and let the Remainder be raifed to that Power which anfwers to the Number of Lives; then this Power being again fubtracted from Unity, let the Remainder be divided by the Intereft of 1 1. and the Quotient will be the prefent Value of all the fucceflive equal Lives.

And again, if the Number of thofe Lives were infinite, the Suns: swould barely be $\frac{1}{d}$.

PR O BLE M XIV.

Of a Perpetual Advowfon.

1°. I fuppofe that at the Time of the Demife of the Incumbent, the Patron would receive the Sum \int, for alienating his Right of the:
next Prefentation, if the Law did not forbid the Alienation in that Circumstance of Time.
2°. I fuppofe that when this Right is transferred, the Age of the Incumbent is fuch, that an Annuity upon his Life would be worth M Years Purchafe, when the Interest of $\mathrm{I} l$. is d.

This being fuppofed, the Right of the next Prefentation is worth $\overline{I-d M} \times \int$, and the Right of Patronage, or perpetual Recurrency of the like Circumftances to Eternity, would be worth $\frac{1-d M}{d M I} \times \int$. In words thus;

Take the prefent Value of the Life of the Incumbent, and multiply it by the Interest of I 1. and reserve the Product.

Subtract this Product from Unity, and let the Remainder be multiplied by the Sum expected f, and the new Product will Shew the Right of the next Prefentation; let aldo this be referved.

Then divide the Second Quantity referved by the fir, and the Quotient will flew the prefent Value of the Right of Patronage, or perpetual Recurrency.

Thus, fuppofing the Life of the Incumbent worth 8 Years Durchafe, the Rate of Intereft $5 \cdot \mathrm{per}$ Cent. and the Sum \int to be 100 l . the Right of the next Prefentation would be worth 60 l . and the Right of perpetual Recurrence 150%

> PR O B L E M XV. Of a Copy-bold.

Supposing that every Copy-bold Tenant pays to the Lord of the Manor a certain Fine on Admittance, and that every Succeffor does the like; to find the Value of the Copy-bold computed from the Time of a Fine being paid, independently from the Fine that may be given on Alicenation.

Solution.

I fuppofe that the Value of the Life of the prefent Tenant, and the Life of every future Succeffor when he comes to Poffeffion is the fame; this being admitted, let M be the Value of a Life, d the Intereft of $I l$. and / the Fine to be paid, then the prefent Value of the

Copy-hold will be $\frac{1-d M}{d M} \times \int$: and this Expreffion being exactly the fame as that whereby the Right of Patronage has been determined, needs no Explanation in Words.
Only it is neceffary to obferve, that the Sum \int paid in Hand being added to this, will make the Canon fhorter, and will be reduced to $\frac{\delta}{d M}$, which may be expreffed thus in Words.

Divide the Fine by the Product of the Life, multiplied by tbe Intereft of 1 l.

Thus, if the Life of a Tenant is worth in Years Purchafe, and the Fine to be paid on Admittance 56 l . and alfo the Rate of Intereft 5 per Cent. then the prefent Value of the Copy-hold is 93 $\frac{1}{3} l$.

PR O B L E M XVI.

A borrows a certain Sum of Money, and gives Security that it Jhall be repaid at bis Deceafe with the Interefts; to fix the Sum which is then to be paid.

Solution.

Let the Sum borrowed be \int, the Life of the Borrower M Years purchafe, d the Intereft of $I l$. then the Sum to be paid at A 's Deceafe will be $\frac{1}{1-d M}$; thus, fuppofing $\int=800, M=11.83$, $d=0.05$, then $\frac{f}{1-d M}$ would be found $=1958 l$: in the fame manner, if the Sum to be paid at A 's Deceafe, was to be an Equivalent for his Life, unpaid at the Time of the Purchafe, that Sum would be $\frac{M}{1-d M}=2895$ l. Supppofing the Annuity received to be 100 l . as alfo the Life of $A_{11} .83$ Years Purchafe.

P R O B L E M XVII.

A borrows a Sum f, payable at his Deceafe, but with this Condition, that if be dies before B, then the whole Sum is to be loft to the Lender; to find what A ought to pay at his Deceafe in cafe be furvives B.

Solution.

Let us fuppofe, as before, that A is 40 Years of Age, that the Sum borrowed is 800 l . and that Intereft of Money is 5 per Cent. Farther, let it be fuppofed that B is 70 Years of Age, then, 1°. determine what A Thould pay at his Deceafe, if the Life of B was not concerned ; by the Solution of the preceding Problem, we find the Sum to be $195^{8 \%}$. But we ought to confider that the Lender having a Chance to lofe his Money, there ought to be a Compenfation for the Rifque he runs, which is founded on the poffibility of a Man of feventy outliving a Man of forty. Now, by the Rules to be delivered in the next Problem, we fhall find that the Probability of that Contingency is meafured by the Fraction $\frac{4}{23}$, and therefore the Probability of the youngeft Life's furviving the oldeft is $\frac{19}{23}$. Now this being the Meafure of the Probability which the Lender has of being repaid, the Sum 195^{8} ought to be increafed in the proportion of 23 to 19 , which will make it to be 2370 l. nearly.

Of the Prababilities of Survivor/bip.

P R O B L E M XVIII.

Any Number of Lives being given, to find their Probability of Survivor/bip.

Solution.
Let $A, B, C, D, \xi^{\circ} c$. be the Lives, whereof A is fuppofed to be the youngeft, B the next to it, C the next, $E_{c} c$. and fo the laft the oldeft.

Let $n, p, q, s, t, \delta \delta^{2}$. be the refpective Intervals intercepted between the Ages of thofe Lives, and the Extremity of old Age fuppofed at 86 ; then the Probabilities of any one of thofe Lives furviving all the reft, will be

Here fome few things may be obferved.
1°. That the Probability of the youngeft Life furviving all the reft, always begins with Unity, and that it is expreffed by fo many Terms as there are Lives concerned.
2°. That the Probabilities of the other Lives furviving all the reft, are always expreffed each by one Term lefs than the preceding.
3°. That each firf Term of thofe whereby each Probability is exprefled, is always the Sum of all the other Terms ftanding above it.
4°. That the Numbers 2, 6, $12,20,30, \Xi^{2} c$. made ufe of in the Denominators of the Fractions are generated by the Multiplication of the following Numbers, $1 \times 2,2 \times 3,3 \times 4,4 \times 5,8{ }^{\circ} c$. It would take up too much room to explain this general Rule in Words at length, for which Reafon I fhall content my felf with explaining only the Cafes of two and three Lives, which are the moft neceffary.

And, Firf, if there be two Lives of a given Age, fuch as 40 and 70, take their Complements of Life, which as I bave explained before, are the Differences between 86 and the refpective Ages, thofe Complements therefore are 46 and 16 .

Divide the fborteft Complement by the Double of the Longeft, and the Quotient will exprefs the Probability of the oldeft Life jurviving the youngeft.

Thus in the prefent Cafe, the fhorteft Complement being 16, and the double of the longeft being 9^{2}, I divide 106 by 92 , and the Quotient $\frac{16}{92}$ or $\frac{4}{23}$ will exprefs the Probability required.

Subtract this Fraction from Unity, and the Remainder $\frac{17}{23}$ will exprefs the Probability of the youngeft Life furviving the oldeft.

So that the Odds of the youngeft Life furviving the oldeft, are 19 to 4 .

The Cafe of three Lives is thus: Suppofe there are three Lives of a given Age, fuch as 40,45 , and 60 ; take their refpective Complements of Life, which are $46,41,26$, then divide the Square of the

284 The Doctrine of Chances applied
fhorteft Complement by 3 times the Product of the other two, and the Quotient will exprefs the Probability of the oldert Life furviving the other two.

Divide the middlemof Complement by the Double of the greatert, and from the Quotient fubtract the Square of the leaft divided by 6 Times the Product of the other two, and the Remainder will exprefs the Probability of the middlemoft Life furviving the other two.

Subtract the Sum of the two foregoing Probabilities from Unity, and the Remander will exprefs the Probability of the youngeft Life furviving the other two.

Thus in the Cafe propofed, the Probability of the oldeft Life furviving the other two, will be found $\frac{676}{565^{8}}=\frac{3}{25}$ nearly.

The Probability of the middlemoft Life furviving the other two will be $\frac{4367}{11316}=\frac{5}{13}$ nearly.

The Probability of the youngeft Life furviving the other two will be $\frac{3}{5}$ nearly.

P R O B L E M XIX.

Any Number of Lives being given, to find the Probability of the Order of their Survivor/Bip.

SOLUTION.
Suppofe the three Lives to be thofe of A, B, C, and that it be required to affign the Probability of Survivorhip as limited to the Order in which they are written, fo that A fhall both furvive B and C, and B alfo furvive C. This being fuppofed, let n, p, q, reprefent the refpective Complements of Life, of the youngeft, middlemoft, and oldeft, then the Probabilities of the fix different Orders that there are in three things, will be as follows;

$$
\begin{array}{r|r}
A, B, C & 1-\frac{p}{2 n}-\frac{q}{2 p}+\frac{q q}{6 n p} \\
A, C, B & \frac{q}{2 p}-\frac{q q}{3 n p} \\
B, A, C & \frac{p}{2 n}-\frac{q}{2 n}+\frac{q q}{6 n p} \\
B, C, A & \frac{q}{2 n}-\frac{q q}{3 n p} \\
C, A, B & \frac{q q}{6 n p} \\
C, B, A & \frac{q q}{6 n p}
\end{array}
$$

In Words thus;
1°. Divide the middlemoft Complement by the double of the greateft, and let the 2 notient be fubtracted from Unity.
2. From that Remainder fubtract again the 2 uotient of the foorteft Complement divided by the Double of the Middlemof:
3°. To that new Remainder add the 2uotient arimng from the Square of the fhorteft Complement divided by fix times the Product of the greateft and middlemof multiplied together, and this laft Sum will exprefs the Probability of the frit Order.

The probability of the Second will be found thus;
1°. Divide the focrteft Complement by the double of the middlemoft, and referve the Quotient.
2°. Divide the Square of the florteft by three times the Product of the longeft Complement, multiplicd by the Middlemoft, and referve the new 2uotient.
3°. Let tbe fecond 2 uotient be fubtracted from the firf, and the Remainder will exprefs. the Probability of the bappening of the fecond Order.

The Probability of the third Order will be found as follws.
I°. Divide the middlemof Complement by the Double of the Greatef, and referve the 2uotient.
2°. Divide the horteft Complement by the Double of the longeff, and referve the Quotient.
3°. Divide the Square of the forteft Complement by fix times the Product of the longef and middlemof multiplied together, and referve the 2uotient.
4°. From the firf 2uotient referved, fubtract the fecond; then to the Remainder add the Third, and the Refullt of thefe Operations wvill exprefs the Probability of the third Order.

The Probability of the fourth Order will be found thus.
1°. Divide the florteft Complement by the Double of the longef, and: referve the Quotient.
2°. Divide the Square of the fhorteft Complement by tbree Times ther Product of the longeft and middlemof, and referve the new Quotient.
3°. From the firt 2 uotient referved, fubtract the fecond, and the Remainder will exprefs the Probability of the fourth Order.

The fifth Order will be found as follows.
Divide the Square of the fhorteft Complement by fix times the Product of the longeff and middlemoft, multiplied togetber, and the 2uotient woill' exprefs the Probability required.
The Probability of the laft Order is the fame as that of the fifth.

P R O B L E M XX.

D, whilft in Health, makes a Will, whereby be bequeaths 500 1. to E, and 300 l. to F. with this Condition, that if either of them dies before bim, the webole is to go to the Survivor of the two; what are the Values of the Expectations of E and F , efimated from the time that the Will was writ?

Solution.
Suppofe D to be 70 Years of Age, $E 36$, and F_{45}; fuppofe alfo that d reprefents the Intereft of $1 l$. when Intereft is at 5 per Cent.

An Annuity upon the Life of D is worth 5.77 , as appears from our Tables, which Value we may call M.

Wherefore if it was fure that D would die before either of them, the Expectation of E upon that Account, would De worth in prefent Value $1-d M \times 500$, and the Expectation of $F, \overline{I-d M} \times 300$; which being reduced to Numbers, are refpectively 355^{l}. 15 s . and 213 l. 9 s.

But as this depends on the Probability of D 's dying firft, we are to look for that Probability, which is compofed of two Parts, that is, when the Order of Survivorfhip is either E, F, D, or F, E, D; now the Order E, F, D, is the fame as A, B, C, in the preceding Problem, whereof the Probability is $1-\frac{p}{2 n}-\frac{\eta}{2 p}+\frac{q 9}{6 n \rho}$, and the Order F, E, D, is the fame as B, A, C, whereof the Probability is $\frac{p}{2 n}-\frac{i q}{2 n}+\frac{9 q}{0 n,}$, and the Sum of thofe Probabilities, viz. $1-\frac{q}{2 p}-\frac{q}{2 n}+\frac{q q}{3^{n} p}$, will exprefs the Probability of D's dying before them both.

Now the Ages being given, their Complements of Life will alfo be given, fo that n will be found $=50, p=4 \mathrm{r}, q=16$; for which reafon the Probability juft now fet down being expreffed in Numbers, will be 0.6865 , and this being multiplied by the Expectations before found, viz. $315 \mathrm{l} .15^{\mathrm{s}}$. and 213 l .9 s . will produce 244 l . $3 \mathrm{~s} .5^{\mathrm{d}}$. and 146 l. 10 s .8 d . and thefe Sums exprefs the prefent Expectations of E and F, arifing from the Profpect of D 's dying before either of them.

But both E and F have a farther Expectation; which, in refpect to E, is, that he fhall furvive D, and that D fhall furvive F, in which Cafe he obtains 800 l . but this not being to be obtained before the Deceale of D, is reduced in prefent Value to 56 g l. 4 s . Now the Probability of obtaining this anfwers to the Order, A, C, B, in the preceding Problem, which is expreffed by $\frac{q}{2 p}-\frac{q q}{3 \eta \rho}=0.1535$; and therefore multiplying the Sum 56 gl .4 s . by 0.1535 , the Product will be $87!.7$ s. $5 d$. and this will be the fecond Part of E 's Expectation, which being joined with the firt Part found before, viz. 244 l .3 s . 5 d . the Sum will be 33 ll . Io s. 10 d . which is the total Expectation of E, or the prefent Sum he might juftly expect, if he would fell his Right to another.
In the fame manner the total Expectation of F will be found to be 213 l. 18 s. 6 d .
Othervife, and more exactly, tbus;
I. Let the Value of an Annuity of 40 l. for D^{\prime} s Life, be taken off $\frac{1}{\text { y }}$ which reduces the Sum to $l .569 .2$ as above.
2. The Heirs of D have likewife a demand upon this laft Sum, for the Contingency of his outliving both the Legatees; which is implied tho' not expreffed in the Queftion. Subtract therefore from the Value of the longett of the 3 Lives D, E, F, which, by Prob. V, is 15.477 , the Value of the longert of the two Lives E, F; which, by Prob. IV, is 15.197 ; and the Remainder $0.28, D$'s Survivorhhip due to the Heirs, taken from $l .569 .2$, confidered as 20 Years Purchafe, or the Perpetuity, reduces it to l. 561.23 .
3. This Sum, now clear of all demands, might be paid down immediately to E and F, in the proportions of, 5 and 3 , according to the Will; were their Ages equal. And altho they are not, we fhall fuppofe that D, or his Executor named, pays it them in that manner ; the Share of E being 1.350 .77 , and that of $F, l .210 .46$. leaving them to adjuft their Pretenfions, on account of Age, between themfelves.
4. In order to which; the Sums which E and F have received being called G and L, refpectively; let the Value of E 's Survivorthip: after D and F, found as above, be denoted by e, and that of F after D and E by f : Then thofe Values, e and f, will reprefent the Chances, or Claims, which E and F have upon each other's Sums, L and G. And therefore the Ballance of their Claims is $\frac{e L-f G}{e+f}$; due by F or E as the Sign is pofitive or negative,

288 The Doctrine of Chances applied
As in our Example, e and f being $3.26,2.269$ refpectively, E muft refund to $F\left(\frac{c L}{f}+f=-\right) l .19 .857$; and the juit Values of their Legacies will be $l .330 .18 \mathrm{~s}$. and $l .230 .6 \mathrm{~s}$.

This laf Computation is to be ufed when the Teftator D is not very old, or the Ages of E and F are confiderably different; or when both thefe Conditions obtain: For in thofe Cares, the Ratio of the Probabiiities of Survivorhhip will differ fenfibly from that of the $V a$ lues of the Probabilities reckoned in Years purchafe. And the like caution is to be obferved in all fimilar Cafes.

Of the Expectations of Life.

I call that the Expectation of Life, the Time which a Perfon of a given Age may juftly expect to continue in being.

I have found by a Calculation deduced from the Method of Fluxions, that upon Suppofition of an equable Decrement of Life, the Expectation of Life would be expreffed by $\frac{1}{2} n$, fuppofing n to denote its Complement.

However, if that Interval be once attained, there arifes a new Expectation of $\frac{1}{4} n$, and afterwards of $\frac{1}{8} n$, and fo on. This being laid down, I fhall proceed farther.

PR O BLE M XXI.

To find the Expectation of two joint Lives, that is, the Time which two Lives may expect to continue together in being.
Solution.

Let the Complements of the Lives be n and p, whereof n be the longeft and p the fhorteft, then the Expectation of the two joint Lives, will be $\frac{1}{2} p-\frac{p p}{6 n}$, in Words thus.
From $\frac{1}{2}$ the hoortelf Complement, fubtrait the 6th Part of its Square, divided by the greateft, the Remainder will exprefs the Number of Years fougbt.

Thus, fuppofing a Life of 40 , and another of 50 , the fhorteft Complement will be 36 , the greateft $46, \frac{1}{2}$ of the fhorteft will be 18, the Square of 36 is 1296 , whereof the fixth Part is 216 , which being divided by 46 , the Quotient will be $\frac{216}{46}=4.69$ nearly; and this being fubtracted from 18 , the Remainder 13.3 I will exprefs the Number of Years due to the two joint Lives.

Corollary.

If the two Lives be equal, the Expectation of the two joint Lives will be $\frac{1}{3}$ part of their common Complement.

PROBLEM XXII.

Any Number of Lives being given, whether equal or unequal, to find bow many $r_{\text {ears }}$ they may be expected to continue together.

Solution.

1°. Take $\frac{1}{2}$ of the fhorteft Complement.
2°. Take $\frac{1}{6}$ part of the Square of the fhorteft, which divide fucceffively by all the other Complements, then add all the Quotients together.
3°. Take $\frac{1}{12}$ part of the Cube of the hortef Complement, which divide fucceffively by the Product of all the other Complements, taken two and two.
4°. Then take $\frac{1}{20}$ part of the Biquadrate of the fhortent Complement, which divide fucceffively by the Products of all the other Complements, taken three and three, and fo on.
5°. Then from the Refult of the firft Operation, fubtract the Refult of the fecond, to the Remainder add the Refult of the third, from the Sum fubtract the Refult of the fourth, and fo on.
6°. The laft Quantity remaining after thefe alternate Subtractions and Additions, will be the thing required.
N. B. The Divifors 2, 6, 12, 20, §c. are the Products of 1 by 2, of 2 by 3 , of 3 by 4 , of 4 by 5 , छc.

Corollary.

If all the Lives be equal, add Unity to the Number of Lives, and divide their common Complement by that Number thus increafed by P p

Unity,

290 The Doctrine of Chancrs applied

Unity, and the Quotient will always exprefs the Time due to their joint Continuance.

P R O B L E M XXIII.

Two Lives being given, to find the Number of Years due to the Longeff.

Solution.
From the Sum of the Years due to each Life, fubtract the Number of Years due to their Joint Continuance, the Remainder will be the Number of Years due to the Longeft, or Survivor of them both.

Thus, fuppofing a Life of 40 , and another of 50 , the Number of Years due to the Life of 40 , is 23 ; the Number of Years due to the Life of 50 , is 18 ; from the Sum of 23 and 18 , vizi 41 , fubtract 13.31 due to their joint Continuance, the Remainder 27.69 will be the Time due to the longeft.

Corollary.

If the Lives be equal, then $\frac{2}{3}$ of their common Complement will be the Number of Years due to the Survivor.

Thus, fuppofing two Lives of 50 , then their Complement will be 36 ; whereof two thirds will be 24 ; which is the Time due to the Survivor of the two.

PR O B L E M XXIV:

Any Number of Lives being given, to find the Number of Years due to the Longeff.

Solution.

Let the. Years due to each Life be refpectively denoted by M, P, 2, $S, \mathcal{E}^{2} c$. then let the joint Lives, taken two and two, be denoted by $\overline{M P}, \overline{M 2}, \overline{M S}, \overline{P 2}, \& c \mathrm{c}$. let alfo the joint Lives, taken three and three be denoted by $\overline{M P 2}, \overline{M P S}, \overline{M 2 S}, \overline{P Q S}, \& c$. Moreover, let the joint Lives, taken four and four, be denoted by $\overline{M P Q S}, \& c$. then if there be three Lives, the Time due to the longeft will be

$$
\begin{aligned}
& M-\overline{M P}+\overline{M P Q} \\
+ & +\overline{M Q} \overline{M 2} \\
+ & 2-\overline{P Q}
\end{aligned}
$$

But if all the Lives be equal; let n be their common Complement, then the Time due to the longeft, will be $\frac{3}{4} n$.

If there be four Lives, the Time due to the longeft will be
$M-\overline{M P}+\overline{M P 2}-\overline{M P 2 S}$
$+P-\overline{M P}+\overline{M P S}$
$+2-\overline{M S}+\overline{M 2 S}$
$+S-\overline{P 2}+\overline{P Q S}$
$-\overline{P S}$
But if all the Lives be equal, the Time due to the longeft will be expreffed by $\frac{4}{5}$ of their common Complement.
Univerfally, if the common Complement of equal Livesbe n, and the Number of Lives p, the Number of Years due to the Longef of them will be $\frac{p}{p+1} \times n$.

PROBLEM XXV.

Any Number of equal Lives being given, to find the Iime in which one, or two, or three, \&c. of them will fail.

Solution.

Let n be their common Complement, p the Number of all the Lives, q the Number of thofe which are to fail, then $\frac{q}{1+1} \times n$ will exprefs the Time required. In words thus;
Multiply the common Complement of the Lives by the Number of the Lives that are to drop, and divide the Product by the Number of all the Lives increafed by Unity.

Thus, fuppofing 100 Lives, each of 40 Years of Age, it will be found that: 5 of them will drop in about two Years and a Quarter.

But if we.put t for the Time given, we fhall have the four following Equations;

$$
\begin{aligned}
& \mathrm{r}^{\circ} \cdot t=\frac{q n}{\frac{p+1}{p}} \\
& 2^{\circ} \cdot q=\frac{p+1 \times t}{n} \\
& 3^{\circ} \cdot p=\frac{n q-1}{t} \\
& 4^{\circ} \cdot n=\frac{p+\mathrm{r} \times t}{q}
\end{aligned}
$$

292 The Doctrine of Chances applied

In which any three of the four Quantities n, p, q, t, being given, the fourth will be known.

This Speculation might be carried to any Number of unequal Lives: but my Defign not being to perplex the Reader with too great Difficulties, I hhall forbear at prefent to profecute the thing any farther.

P R O B L E M XXVI.

A, who is 30 Years of Age, buys an Annuity of 1 1. for a limited Time of his Life, Juppofe 10 Years, on Condition that if he dies before the Expiration of that Time, the Purchafe Money is wobolly to be loft to bis Heirs; to find the prefent Value of the Purcbafe, fuppofing Intereft at 5 per Cent.

Solution.

Let n be the Complement of A 's Life, m the limited Number of Years, p the Difference of n and m; 2 the Value of an Annuity of 1 l. certain for m Years, and V the Value of the Perpetuity: then the prefent Value of the Purchafe will be $\frac{m \nu+p-\overline{\nu+1} \times 2}{n}$. In Words thus;
1°. Multiply V, the Value of a Perpetuity, at the given Rate of Intereft, by m the limited Number of Years, and referve the Product.
2°. To the Same V add Unity, and take the Difference between their Sum and p, which is the Excefs of the Complement of A's Age above the limited Number of Years: multiply tbis Difference by Q, an Annuity certain for m Years, to get the fecond Produst.
3°. Let the Sum of the fe Products, if p is greater than $V+1$; and their Difference, if it is leffer, be divided by n , the Complement of A's Age; and the 2uotient Sall be the Value of the Purcbafe.

As, in the Queftion propofed, where $n=56, m=10, p=46$, $2=7.7212$, and $V=20$; the firft Product $(m V)$ is that of 20 by 10 , or 200 . And $p-\overline{V+1}$ being $46-21=25$, the fecond Product is 25×7.7212, that is 193.0302 . The two Products added (p being greater than $V+1$) make 393.0302 : which divided by 56 quotes, for the Anfwer, 7.0184 Years Purchafe.

Note, I. When it happens that p is equal to $V+1$; as, Intereft being at 5 per Cent, if the Difference of n and m is 21 ; the fecond Product $p-\overline{V+1} \times 2$ vanifhing, the Anfwer is fimply $\frac{m V}{n}$.
2. If
2. If $m=n$, or $p=0$, feeing V is equal to $\frac{1}{r-1}$, the Expreffion will be changed into $\frac{1}{r-1}-\frac{r 2}{n \times r-1}$; which coincides with the Solution of Prob. I: 2 reprefenting now the fame Thing as P did in that Problem.
3. By this Propofition, fome ufeful Queftions concerning Infurances may be refolved.

Suppofe A, at 30 Years of Age, affigns over to B an Annuity of roool a Year, limited to 10 Years, and depending likewife upon A 's Life: then, by the foregoing Solution, A ought to receive for it only $7018 l .8 \mathrm{~s}$. Intereft being at 5 per Cent. But if B wants that the Annuity fhould ftand clear of all Rifques, he muft pay for it the Value certain, which is $77^{2} \mathrm{I} l .4^{s}$. and A ought to have his Life infured for $702 l .16$ s. the juft Price of fuch an Infurance being the Difference of the Values of the Annuity certain, and of the fame Annuity fubject to the Contingency of the Annuitant's Life failing.

The fame 702 l. 16 s . is likewife the Value of the Reverfion of this Annuity to a Perfon and his Heirs, who fhould fucceed to the Remainder of the ro Years, upon A 's Deceafe. See Prob. XXVIII.

It is evident by the foregoing Procefs, that altho' the Queftion there propofed is particular, yet the Solution is general ; which Method, often practifed in my Doctrine of Cbances, is of fingular Ufe to. fix the Reader's Imagination.

PR O B L E M XXVII.

A pays an Annuity of 1001 . during the Lives of B and C, each 34 rears of Age; to find what A ought to. give in prefent Money to buy off the Life of B, Juppofing Intereft at 4 per Cent.

Solution.

It will be found by our Tables that an Annuity upon a Life of 34 is worth ${ }_{14.12}$ Years Purchafe; and, by the Rules before delivered, that an Annuity upon the longef of the two Lives of B and C is worth: 18.40: hence it is very plain, that, to buy off the Life of B, A muft: pay the Difference between 18.40 and 14.12 , which being 4.28 , it: follows that A ought to pay 428 l:

In the fame manner, if A were to pay an Annuity during the three Lives of: B, C, D, whether of the fame or different Ages, it would

294 The Doctrine of Chances applied

be eafy to determine what A ought to pay to buy off one of the Lives of B, C, D, or any two of them, or to redeem the whole.

For, 1°. if the Life of D is to be bought off, then from the Value of the three Lives, fubtract the Value of the two Lives of B and C_{2} and the Remainder is what is to be given to buy off the Life of \bar{D}.
2°. If the two Lives of C and D were to be bought off, then from the Value of the three Lives, fubtract the Life of B, and the Remainder is what is to be given to buy off thofe two Lives.

Lajtly, It is plain that to redeem the whole, the Value of the three Lives ought to be paid.

PR O B L E M XXVIII.

A, whole Life is worth x_{4} Years Purchafe, Juppojing Interef at 4 per Cent. is to enjoy an Annuity of 1001. during the Term of 3 I rears; B and his Heirs bave the Reverfion of it after the Deceafe of A for the Term remaining; to find the Value of B's Expectation.

Solution.
Since the Life of A is fuppofed to be worth 14 Years Purchafe when Intereft is at 4 per Cent. it follows from the Tables that A muft be about 35 Years of Age, therefore find, by the twenty-fixth Propofition, the Value of an Annuity on a Life of 35, to continue the limited Time of 3^{1} Years; let that Value be fubtracted from the Value of an Annuity certain, to continue 3 I Years; and the Remainder will be the Value of the Reverfion.

PR O B L E M XXIX.

A is to bave an Annuity of 100 J. for bim and his Heirs after the failing of any one of the Lives $\mathrm{M}, \mathrm{P}, \mathrm{Q}$, the firft of rwbich is woith 13 Years Purchafe, the fecond 14, and the third 15 ; to find the prefent Value of bis Expectation, Intereft of Money being Juppofed at 4 per Cent.

> SOLUTION.

By the Example to Prob. III. it appears, that an Annuity upon the above 3 joint Lives is worth 7.4 Y Years Purchafe; let this be fup-
pofed $=R$, and let \int reprefent the prefent Value of a Perpetuity of 100 l . which in this Cafe is 2500 l . then the prefent Expectation of A will be worth $\overline{1-d R} \times \rho$. In Words thus;

Multiply the Value of the three joint Lives by the Intereft of I 1. then Jubtracting that Product from Unity, let the Remainder be multiplied by the Value of the Perpetuity, and the Product will be the Expectation required.

In this Cafe 7.4 I , multiplied by 0.04 , produces 0.2964 , and this Product fubtracted from Unity, leaves 0.7036 ; now this Remainder being multiplied by 2500 , produces 1.759 l. the Expectation of A.

But if the Problem had been, that A fhould not have the Annuity before the Failing of any two of thofe Lives; from the Sum of all the joint Lives combined two and two, fubtract the double Value of the three joint Lives, and let the Remainder be called τ, then the Expectation of A will be worth $\overline{1-d T} \times \int$; now, by the Rules before delivered, we fhall find that the Sum of all the joint Lives combined two and two, is 29.06, from which fubtracting the double of the three joint Lives, viz. 14.82 , the Remainder is 14.24 . Hence fuppofing $T=14.24$, then $\overline{1-d T} \times \int$ will be found to be 10761 . and this is the Value of A 's Expectation.

Lafly, If A was not to have the Annuity before the Extinction of the three Lives, fuppofe the Value of the three Lives $=V$, then the Expectation of A would be worth $\overline{1-d V} \times \rho$, which in this Cafe: is 465%.

P R ○ B L E M XXX.

To determine the Fines to be paid for renerwing any Number of Years in a College-Leafe of twenty; and alfo. wobat Rate of Intereft is made by a Purcbafer, who: may bappen to give an advanced Price for the fame, upon Suppofition that the Contractor is allowed 8 per Cent. of bis Money.

Altho' the Problem here propofed does not feem to relate to the Subject of this Book, yet as fome ufetul Conclufions may be derived from the Solution of it, I have thought fit to infert it in this Place.

296 The Doctrine of Chances applied
Table of Fines.

1	0.2146	8	2.2821	15	5.8254
2	0.4463	9	2.6792	16	6.5060
3	0.6965	IO	3.1081	17	7.2411
4	0.9666	11	3.5713	18	8.0349
5	1.2587	12	4.0715	19	8.9922
6	1.4133	13	4.6118	20	9.8181
7	1.9144 .14	5.1953	1		

If a Purchafer gives the Original Contractor iI Years Purchafe for his Leafe of 20, he makes above $6 \frac{1}{2}$ per Cent. of his Money.

If he gives 12 Years Purchafe for the fame, he makes above $5 l .8 \mathrm{~s}$. per Cent. of his Money.

If he gives I3 Years Purchafe, he makes $4 \frac{1}{2}$ per Cent. of his Money.

PROBLEM XXXI.

To determine the Fines to be paid for renewing any Number of Years in a College-Leafe of One and Treenty; as alfo what Rate of Intereft is made by a Purchafer who may bappen to give an advanced Price for the fame, upon Suppofition that the Contractor is allowed 8 per Cent. of his Money.

Table of Fines.

1	0.1987	8	2.1131	15	5.3940
2	0.4133	9	2.2808	16	6.0241
3	0.6450	10	2.8779	17	0.7047
4	0.8952	11	3.3068	18	7.4398
5	1.1653	12	3.7700	19	8.2336
6	1.4574	13	4.2702	20	9.0909
7	1.6120	14	4.8105	21	10.0168

He that gives II Years Purchafe, inftead of 10.0168 for renewing his Leafe for 21 Years, makes 6 l . 16 s-per Cent. of his Money.

He who gives 12 Years Purchafe for the fame, makes very near 5l. I6 s. per Cent. of his Money.

He who gives I3 Years Purchafe for the fame, makes a little more than $4 l .16$ s. per Cent. of his Money.

The Values of Annuities for Lives baving been calculated, in this Book, upon a Juppofition that the Paynients are made Yearly, and there being Jome Occafions weberein it is fipulated that the Payments Jhould be made Half-Yearly, I bave thought fit to add the two following Problems; rebereby, 1°. It is fherwn what the Half-Yearly Payments ought to be, if the Price of the Purchafe is preferved. 2°. Howe the Price of the Purchafe ought to be increajed, if the Half-Yearly Paynents are required to be the Half of the Yearly Payments.

PR O B L E M XXXII.

An Annuity being given, to find what Half-Yearly Payments will be equivalent to it, when Intereft of Money is 4 , 5, or 6 per Cent

> SOLUTION.

Take Half of the Annuity, and from that Half fubtract its rooth, or 8oth, or 68 th Part, according as the Intereft is 4,5 , or 6 per Cent. and the Remainder will be the Value of the Half-Yearly Payments required; thus, if the Annuity was 1001 . the Half-Yearly Payments would refpectively be 49 l . $10 \mathrm{s}$.49 ll . 7 s. 6 d .49 l .5 s .3 d . nearly.

P R O B L E M XXXIII.

The prefent Value of an Annuity being given, to find bow much this prefent Value ougbt to be increafed, when it is required that the Payments gall be Half-Yearly, and alfo one Half of the Yearly Payments, when Intereft is at 4, 5, or 6 per Cent.

Solution.
To the prefent Value of the Annuity add refpectively its 99 th, 79 th, or 67 th, and the Sums will be the Values increafed.

As there are fome Perfons webo may be defirous to fee a general Solution of the two laft Problems, I bave thought fit to add what follows.
In the firft of the two laft Problems, let A be the Yearly Payments agreed on, and B the Half-Yearly Payments required, r the Yearly Rate of Intereft, then $B=\frac{r^{\frac{1}{2}}-1}{r-1} \times A$. In the fecond, let M be the prefent Value of the Yearly Payments, P the prefent Value of thofe that are to be Half-Yearly, then $P=\frac{\frac{1}{2} \times \overline{-1}}{\frac{1}{r^{2}}-1} \times M$.

298 The Doctrine of Chances applied

Tablel.

The prefent Value of an annuity of one pound, for any Number of Years not exceeding 100, Intereft at 3 per Cent.

皆	Value.	$\|\underset{\pi}{\Omega}\|$	Value	$\left\|\begin{array}{c} \stackrel{0}{6} \\ \stackrel{6}{2} \end{array}\right\|$	Value.	9	Value
		26				76	
			-	52	26.1	77	O3
3		28		53	26.3	78	30.0100
4		29	19.188	54	26.57	79	30.1068
	4.	30	19.600	55	26.774	80	30.2008
6		31	20.0	56	26.9655	81	30.2920
7	6.	32	20.388	57	27.1509	82	
8	7.0	33		58	27.3310	83	30.4666
		34	2 I	59	27.505	84	O
10		35		60	$\underline{27.6756}$	85	30.6311
1		36	2	61	27.8404	86	30.7099
12	9.9540	37	22	62	28.	87	
13	נ0.6	38	22	63	28.1557	88	
14	II 1.2	39	22.8082	64	28.3065	8	32
15	11.9	40	$\underbrace{23.1148}$	65	$\underline{28.4529}$	90	24
16	12.5	41		$\overline{66}$			
	13.1	42		67	28.733	92	
18		43	23.9819	68	28.86	93	
19	14.3238	44	24.2543	69	28.997^{1}	94	31.262
	14.8775	45	24.518	70	29, 12	95	$\underline{31.3224}$
1	15.4150	46	24.7754	71	29.24	96	1.38
	15.9369	47	25.0247	72	29.365	97	,
2	16.4436	8	25.2667	73	29.4807	98	
24	16.9355	49	25.5017	74	29.5929	99	3
25	17.4131	50	25.7298	75	29.7018		

The Value of the Perpetuity is $33^{\frac{1}{3}}$ Years Purchafe.

Table II.
The prefent Value of an Annuity of one Pound, to continue fo long as a Life of a given Age is in being, Intereft being eftimated at 3 per Cent.

Age.	Value	Age.	Value	Age.	Value	Age.	Value
1	$\overline{15.05}$	26	$\overline{17.50}$	51	12.26	76	4.05
2	16.62	27	17.33	52	12.00	77	3.63
3	17.83	28	17.16	53	11.73	78	3.2 I
4	18.46	29	16.98	54	II. 46	79	2.78
5	$\underline{18.90}$	30	16.80	55	II.18	80	2.34
6	$\underline{19.33}$	3 I	$\frac{16.62}{16.6}$	56	10.90	$\overline{81}$	1.89
7	19.60	32	16.44	57	10.6I	82	I. 43
8	19.74	33	16.25	58	10.32	83	0.96
9	19.87	34	16.06	59	10.03	84	0.49
10	19.87	35	15.86	60	9.73	85	0.00
11	$\overline{19.74}$	36	$\frac{15.87}{15}$	61	9.42	86	0.00
12	I 9.60	37	15.46	62	9.1 1		
13	19.47	38	15.26	63	8.79		
14	19.33	39	15.05	64	8.46		
15	19.19	40	$\underline{14.84}$	65	8.13		
16	19.05	41	14.63	66	7.79		
17	18.90	42	14.41	67	7.45		
18	18.76	43	14.19	68	7.10		
19	18.61	44	13.96	69	6.75		
20	18.46	45	13.73	70	6.38		
21	18.30	46	13.49	71	6.01		
22	18.15	47	I 3.25	72	5.63		
23	17.99	48	13.01	73	5.25		
24	17.83	49	12.76	74	4.85		
25	17.66	50	12.51	75	4.45		

300 The Doctrine of Chances applied

TABLe III.

The prefent Value of an Annuity of one Pound, for any Number of Years not exceeding 100, Intereft at $3 \frac{1}{2}$ per Cent.

	alue	$\left\lvert\, \begin{gathered} \mathbf{c} \\ \stackrel{0}{\omega} \\ \hline \end{gathered}\right.$	Value.	$\left\lvert\, \begin{array}{\|c\|} \substack{0 \\ 9 \\ 9} \end{array}\right.$	ue.	蒼	Value.
	0.9	26		51	23.62	76	26.4799
	1.8997	27	17.285	5^{2}	23.7958	77	26.5506
	2.8010	28	17.667	53	23.9573	78	26.6190
	3.6731	29	18.035^{8}	54	24.1133	79	6.6850
5	4.5151	30	18.3920	55	$\underline{24.2641}$	80	26.7
6	5.328	31	18.7	56	24.4097	81	26.8104
7	6.1145	32	19.0689	57	24.5504	82	6.8700
8	6.8740	33	19.390	5^{8}	24.6864	83	6.9275
	7.60	34	19.7007	59	${ }^{2} 4.8178$	84	26.983 I
10	8.316	35	20.0007	60	24.9447	85	27.0368
11	15	36	20.2905	61	25.0674	86	27.0887
12	9.6633	37	20.5705	62	25.1859	87	7.1388
13	10.3027	38	20.84 II	63	25.3004	88	年18
14	10.9	39	21.	64	25.4110	89	27.2341
15	11.5174	40	21.355 I	65	25.5178	90	27.2793
16	12.0	41	21	66	25.62 II	91	7.323°
1	12.6513	42	21.8349	67	25.7209	92	7.3652
18	13.1897	43	22.0627	68	25.8173	93	7.4060
19	13.7098	44	22.2828	69	25.9104	94	
20	14.2124	45	22.4955	70	$\underline{26.0004}$	95	27.4835
21	14.6980	46	22.7009	7 I	26.0873	96	
22	15.1671	47	22.8994	72	26.1713	97	27.555^{8}
23	15.6204	48	23.0912	73	26.2525	98	27.5902
24	16.0584	49	23.2766	74	26.3309	99	27.6234
	16.4815	50	23.4556		26.4067	\bigcirc	27.6554

The Value of the Perpetuity is $28 \frac{1}{7}$ Years Purchafe.

Table IV.
The prefent Value of an Annuity of one Pound, fo long as a Life of a given Age is in being, Intereft. being eftimated at $3^{\frac{1}{2}}$ per Cent.

Age.	Value	Age.	Value	Age.	Value	Age.	Value
1	$\overline{14.16}$	6	$\overline{16.28}$	51	11.69	76	3.98
2	15.53	27	16.13	52	II 1.45	77	3.57
3	16.56	28	15.98	53	I1. 20	78	3.16
4	17.09	29	15.83	54	10.95	79	2.74
5	17.46	30	15.68	55	10.69	80	2.35
6	17.82	3 I	15.53	56	10.44	$\overline{81}$	1.87
	18.05	32	15.37	57	10.18	82	1.42
8	18.16	33	15.21	58	9.91	83	0.95
9	18.27	34	I 5.05	59	9.64	84	0.48
10	18.27	35	$\underline{14.89}$	60	9.36	85	0.00
11	18.16	36	14.71	61	9.08	$\overline{861}$	0.00
12	18.05	37	14.52	62	8.79		
13	17.94	38	14.34	63	8.49		
14	17.82	39	14.16	64	8.19		
15	17.71	40	13.98	65	7.88		
16	17.59	41	13.79	60	7.56		
17	17.46	42	13.59	67	7.24		
18	17.33	43	I 3.40	68	6.91		
19	17.21	44	I3.20	69	6.57		
20	17.09	45	$\underline{12.99}$	70	6.22		
21	16.96	46	12.7^{8}	71	5.87		
22	16.83	47	12.57	72	5.5 I		
23	16.69	48	12.36	73	5.14		
24	16.56	49	12.14	74	4.77		
25	16.42	50	11.92	75	4.38		

TABIE

302 The Doctrine of Chances applied
Table V.
The present Value of an Annuity of one Pound, for any Number of Years not exceeding 100, Intereft at 4 per Cent.

Table VI.
The prefent Value of an Annuity of one Pound, to continue fo long as a Life of a given Age is in being, Intereft being efimated at 4 per Cent.

Age.	Value	Age.	Value '	Age.	Value	Age.	Value
	$\overline{13.36}$	26	15.19	51	II.13	76	3.91
2	14.54	27	15.06	52	10.92	77	3.52
3	I 5.43	28	14.94	53	10.70	78	$3 \cdot 11$
4	15.89	29	$\mathrm{I}_{4} .8 \mathrm{I}$	54	IC. 47	79	2.70
5	16.21	30	14.68	55	$\underline{10.24}$	80	2.28
6	$\overline{16.50}$	31	14.54	56	10.01	81	1.85
7	16.64	32	14.41	57	9.77	82	1.40
8	16.79	33	14.27	58	9.52	83	0.95
9	16.88	34	14.12	59	9.27	84	0.48
10	16.88	35	13.98	60	9.01	85	0.00
11	$\overline{16.79}$	36	13.82	61	8.75	86	0.00
12	16.64	37	13.67	62	8.48		
13	16.60	38	13.52	63	8.20		
14	16.50	39	I 3.36	64	7.92		
15	$\frac{16.41}{16.31}$	40	12.20	65	7.63		
16	16.31	41	13.02	60	7.33		
17	16.21	42	12.85	67	7.02		
18	16.10	43	12.68	68	6.71		
19	15.99	44	12.50	69	6.39		
20	15.89	45	$\underline{12.32}$	70	6.06		
21	15.78	46	12.13	71	$5 \cdot 72$		
22	15.67	47	11.94	72	5.38		
23	15.55	48	11.74	73	5.02		
24	15.43	49	II. 54	74	4.66		
25	15.3 I	50	III. 34	75	4.29		

304 The Doctrine of Chances applied

Table VII.

The present Value of an Annuity of one Pound, for any number i of Years not exceeding 100, Intereft at 5 per Cent.

Table VIII.
The frefent Value of an Annuity of one Pound, to continue fo long as a Life of a given Age is in being, Intereft at 5 per Cent.

Age.	Value	Age.	Value	Age.	Value	Age.	Value
1	11.96	26	13.37	51	10.17	76	3.78
2	12.88	27	I 3.28	52	9.99	77	$3 \cdot 41$
3	13.55	28	13.18	53	9.82	78	3.03
4	13.89	29	13.09	54	9.63	79	2.64
5	14.12	30	$\underline{12.99}$	55	9.44	80	2.23
6	14.34	$3{ }^{1}$	12.88	56	9.24	$\overline{81}$	1.81
7	14.47	32	12.78	57	9.04	82	1.38
8	14.53	33	12.67	58	8.83	83	0.94
9	14.60	34	12.56	59	8.61	84	0.47
10	14.60	35	12.45	6	8.39	85	0.00
11	14.53	36	12.33	61	8.16	$\frac{8}{86}$	0.00
12	14.47	37	12.21	62	7.93		
13	14.41	3^{8}	12.09	63	7.68		
14	14.34	39	II.96	64	7.43		
15	$\underline{14.27}$	40	11.83	65	7.18		
16	$\overline{14.20}$	4 I	11.70	$\overline{66}$	6.91		
17	14.12	42	11.57	67	6.64		
18	14.05	43	II.43	68	6.36		
19	I 3.97	44	II. 29	69	6.97		
20	$\underline{13.89}$	45	II. 14	70	5.77		
21	13.81	46	10.99	71	5.47		
22	13.72	47	10.84	72	$5 \cdot 15$		
23	13.64	48	10.68	73	4.82		
24	I 3.55	49	10.51	74	4.49		
25	I 3.46	50	10.35	75	4.14		

Table IX.
The prefent Value of an Annuity of one Pound, for any Number of Years not exceeding 100, Intereft at 6 per Cent.

TAble X.
The prefent Value of an Annuity of one Pound, to continue fo long as a Life of a given Age is in being, Interef being eftimated at 6 per Cent.

Age.	Value	Age.	Value	Age.	Value	Age.	Value
	$\overline{10.80}$	26	11.90		9.34	76	3.66
2	II. 53	27	11.83	52	9.20	77	3.31
3	12.04	28	11.76	53	9.04	78	2.95
4	12.30	29	11.68	54	8.90	79	2.57
5	12.47	30	$\underline{11.61}$	55	$8.7{ }^{2}$	80	2.18
6	12.63	3 I	11.53	56	8.56	$\overline{81}$	1. 7^{8}
7	12.74	32	I1.45	57	8.3^{8}	82	1.36
8	12.79	33	II. 36	58	8.20	83	0.92
9	12.84	34	11.60	59	8.02	84	0.77
10	12.84	$\underline{35}$	11.18	60	7.83	85	0.00
11	12.79	36	If.09	61	7.63	86	0.00
12	12.74	37	11.00	62	7.42		
13	12.69	38	10.90	63	7.21		
14	12.63	39	10.80	64	7.00		
15	$\underline{12.58}$	40	10.70	65	6.77		
16	$\underline{12.53}$	41	10.00	$\overline{66}$	6.53		
17	12.47	42	10.50	67	6.22		
18	12.41	43	10.37	68	6.03		
19	12.36	44	10.26	69	5.77		
20	$\underline{12.30}$	45	$\underline{10.14}$	70	5.50		
21	12.23	46	10.02	71	5.22		
22	12.17	47	9.90	72	4.93		
23	12.11	48	9.76	73	4.63		
24	12.04	49	9.63	74	4.32		
25	11.97	50	9.49	75	4.00		

308 The Doctrine of Chances applied

Note ; The $1 / t, 3^{d}, 5^{t h}, 7^{t h}$ and $9 t b$ Tables ferve likewife to refolve the Queftions concerning Compound Interef: as

I.

To find the prefent Value of 10001 . payable 7 Years bence, at $3 \frac{1}{2}$ per Cent. From the prefent Value of an Annuity of $\mathrm{I} l$ certain for 7 Years, which, in Tab. III. is 6.1145 , I fubtract the like Value for 6 Years, which is $5 \cdot 3286$; and the Remainder .7859 is the Value of the 7 tb Year's Rent, or of 1% payable after 7 Years; which multiplied by 1000 gives the Anfwer 785 l. $18 / \mathrm{h}$.

II.

If it is afked, wobat weill be the Amount of the Sum S in 7 Years at $3 \frac{1}{2}$ per Cent? Having found .7859 as above, 'tis plain the Amount will be $\frac{s}{.7559}$.

III.

If the Queftion is, In revat time a Sum S will be doubled, tripled, or increafed in any given Ratio at $3,3 \frac{1}{2}$, \&cc. per Cent. I take, in the proper Table, two contiguous Numbers whofe Difference is neareft the Reciprocal of the Ratio given, as $\frac{1}{2}, \frac{1}{3}, \& c$. And the Year againft the higher number is the Anfwer.

Thus in Tab. I. againft the Years 22, 23, fand the Numbers 15.9369 and 16.443^{6}; whofe Difference .5067 being a little more than .5 , or $\frac{1}{2}$, fhews that in 23 Years, a Sum S will be a little lefs than doubled, at 3 per Cent. Compound Intereft. And againft the Years 36 and 37 are 21.8323, and 22.1672 ; the Difference whereof being 3349 , nearly $\frac{1}{3}$, thews that in 14 Years more it will be almoft tripled.

If more exactnefs is required ; take the adjoining Difference whofe Error is contrary to that of the Difference found; and thence compute the proportional part to be added or fubtracted thus, in the laft of thefe Examples, the Difference between the Years 37 and 38 is .3252 , which wants .0081 of $.3333\left(=\frac{1}{3}\right)$, as the other Difference .3349 exceeded it by .0016. The $38 t b$ Year is therefore to be divided in the Ratio of 16 to 81 ; that is $\frac{16}{97}$ of a Year, or about 2 Months, is to be added to the 37 Years.

IV.

To find at what Rate of Intereft I ought to lay out a Sum S , go as it may encreafe $\frac{1}{3}$ for Infance, or become $\frac{4}{3} \mathrm{~S}$ in 7 Years. Here theFraction I am to look for among the Differences is $\frac{3}{4}$, or the Decimal .75 ; which is not to be found in $\tau a b$, I. or III, till after the limited Time of 7 Years. But in Tab. V, the Numbers againft 6 and 7 Years give the Difference .7599 ; and the Rate is 4 per Cent. nearly.

To find how nearly; we may proceed as under the foregoing Rule. Take the Difference between 6 and 7 Years in Tab. VII. for 5 per Cent.; which being .7107 , wanting .0393 of .75 , as .7599 exceeded it by .0099 ; divide Unity in the Ratio of 99 to 393 , that is of 33 to ${ }_{13}$ r, and the leffer Part added to 4 per Cent. gives the Rate fought, $4 \frac{33}{104}$, or $4 \frac{1}{5}$.

P A R T II.

Containing the Demonftrations of fome of the principal Propofitions in the foregoing Treatije.

CHAPTERI.

IObferved formerly, that upon Suppofition that the Decrements of Life were in Arithmetic Progreffion, the Conclufions derived from thence would very little vary from thofe, that could be deduced from the Table of Obfervations made at Breflaw, concerning the Mortality of Mankind; which Table was about fifty Years ago inferted by Dr. Halley in the Pbilofopbical Tranfactions, together with fome Calculations concerning the Values of Lives according to a given Age.

Upon the foregoing Principle, I fuppofed that if n reprefented the Complement of Life, the Probabilities of living $1,2,3,4,5, E \mathcal{}$. Years, would be expreffed by the following Series, $\frac{n-1}{n}, \frac{n-2}{n}, \frac{n-3}{n}$, $\frac{x-4}{n}, \frac{n-5}{n}, \mathcal{E} c$. and confequently that the Value of a Life, whofe Complement is n, would be expreffed by the Series $\frac{n-1}{n r}+\frac{n-2}{n r r}+\frac{n-3}{n r^{3}}+\frac{n-4}{n r^{4}}+\frac{n-5}{n r^{5}}, \mathcal{E} c$. the Sum of which I have afferted in Problem I. to be $\frac{1-\frac{r}{n} P}{r-1}$, where the Signification of the Quantities P and r is explained.

As the Reafonings that led me to that general Expreffion, require fomething more than an ordinary Skill in the Doctrine of Series, I fhall forbear to mention them in this Place; and content myfelf with pointing out to the Reader a Method, whereby he may fatisfy himfelf of the Truth of that Theorem, provided he underftand fo much of a Series, as to be able to fum up a Geometric Progreffion.

Demonstration.

$P=\frac{1}{r}+\frac{1}{r r}+\frac{1}{r^{3}}+\frac{1}{r^{4}}+\frac{1}{r^{5}} \ldots \frac{1}{r^{n}}$.
Therefore,
$r P=1+\frac{1}{r}+\frac{1}{r r}+\frac{1}{r^{3}}+\frac{1}{r^{4}} \ldots \therefore+\frac{1}{r^{n-1}}$
And
$\frac{r P}{n}=\frac{1}{n}+\frac{1}{n r}+\frac{1}{n r r}+\frac{1}{n r^{3}}+\frac{1}{n r_{4}} \ldots+\frac{1}{n r^{n-1}}$.
Therefore,
$\mathrm{I}-\frac{r P}{n}=\frac{n-1}{n}-\frac{1}{n r}-\frac{1}{n r r}-\frac{1}{n r^{3}}-\frac{1}{n r^{4}}-\ldots \frac{1}{n r^{n-1}}$.
But this is to be divided by $r-1$, or multiplied by $\frac{1}{r-1}=\frac{1}{r}+\frac{1}{r r}+\frac{1}{r^{3}}+\frac{1}{r^{4}}+\frac{1}{r^{5}}+\frac{1}{r^{6}}, \mathcal{E}^{3} c$.
Then multiplying actually thofe two Series's together, the Product will be found to be

$$
\begin{array}{r}
\frac{n-1}{n r}-\frac{1}{n r r}-\frac{1}{n r^{3}}-\frac{1}{n r^{4}}-\frac{1}{n r^{5}}-\frac{1}{n r^{0}} \delta c . \\
+\frac{n-1}{n r r}-\frac{1}{n r^{3}}-\frac{1}{n r^{4}}-\frac{1}{n r^{5}}-\frac{1}{n r^{6}} \delta c . \\
+\frac{n-1}{n r^{3}}-\frac{1}{n r^{4}}-\frac{1}{n r^{5}}-\frac{1}{n r^{6}} \delta c . \\
+\frac{n-1}{n r^{4}}-\frac{1}{n r^{5}}-\frac{1}{n r^{0}} \delta^{2} c . \\
+\frac{n-1}{n r^{5}}-\frac{1}{n n^{6}} \delta c . \\
+\frac{n-1}{n r^{6}} \delta c .
\end{array}
$$

And adding the Terms of the perpendicular Columns together, we: fhall have $\frac{n-1}{n r}+\frac{n-2}{n r r}+\frac{n-3}{n r^{3}}+\frac{n-4}{n r^{4}}+\frac{n-5}{n r^{5}}+\frac{n-6}{n r^{6}}$ © c.
which confequently is equal to $\frac{1-\frac{r}{n} p}{r-1}$: which was to be demonftrated.

If it be required that upon the Failing of a Life; fuch Part of the Annuity fhould be paid, as may be proportional to the Time elapled from the Beginning of the laft Year, to the Time of the Life's failing, then the Value of the Life will be $\frac{1}{r-1}-\frac{1}{a_{n}} P_{2}$, wherein a reprefents, the hyperbolic Logarithm of the Rate of Interent.

But becaufe there are no Tables printed of hyperbolic Logarithms, and that the Reduction of a common Logarithm to an hyperbolic is fomewhat laborious, it will be fufficient here to fet down the hyperbolic Logarithmis of $1.03,1.035,1.04,1.05,1.06$, which are refpectively, $0.0295^{66}, 0.0344,0.03922,0.04879,0.05^{82}$ 上, or $\frac{1}{35}, \frac{1}{31}, \frac{2}{51}, \frac{2}{41}, \frac{6}{103}$ nearly.

C H A P T ER II.

Explaining the Rules of combined Lives.
Suppofing a fictitious Life, whofe Number of Chances to continue in being from Year to Year, are conftantly equal to a, and the Number of Chances for failing are conftantly equal to b, fo that the Odds of its continuing during the Space of any one Year, be to its failing in the fame Interval of Time conftantly as a to b, the Value of an Annuity upon fuch a Life would be eafily found.

For, if we make $a+-b=s$, the Probabilities of living $1,2,3,4,5$, $\mathcal{S}^{3} c$. Years would be reprefented by the Series $\frac{a}{s}, \frac{a a}{s s}, \frac{a^{3}}{s i}, \frac{a^{4}}{s+}, \frac{a^{5}}{s^{5}}$, Egc. continued to Eternity; and confequently the Value of an Annuity upon fuch Life would be expreffed by this new Series $\frac{a}{s r}+\frac{a a}{s s r r}+\frac{a^{3}}{s^{3} r^{3}}+\frac{a^{4}}{s^{4} r^{4}} छ^{2} c$. which being a geometric Progreffion perpetually decreafing, the Sum of it will be found to be $\frac{a}{s r-a}$: thus, if a ftands for $2 I$, and b for I, and alfo r for 1.05 , the Value of fuch Life would be ten Years Purchafe.

From thefe Premifes the following Corollaries may be drawn:

Coroliary I.

An Annuity upon a fictitious Life being given, the Probability of its continuing one Year in being is alfo given; for let the Value be $=M$, then $\frac{a}{f}=\frac{M r}{M+1}$.

Corollary II.

If a Life, whofe Value is deduced from our Tables is found to be worth io Years Purchafe, then fuch Life is equivalent to a fictitious Life, whofe Number of Chances for continuing one Year, is to the Number of Chances for its failing in that Year, as 21 to 1.

Corollary III.

Wherefore having taken the Value of a Life from our Tables, or calculated it according to the Rules prefcribed; we may transfer the Value of that Life to that of a fictitious Life, and find the Number of Chances it would have for continuing or failing Yearly.

Corollary IV.

And the Combination of two or more real Lives will be very near the fame as the Combination of fo many correfponding fictitious Lives; and therefore an Annuity granted upon one or more real Lives, is nearly of the fame Value as an Annuity upon a fictitious Life.

Thefe things being premifed, it will not be difficult to determine the Value of an Annuity upon two or three, or as many joint Lives as may be affigned.

For let x reprefent the Probability of one Life's continuing from Year to Year, and y the Probability of another Life's continuing the fame Time; then according to the Principles of the Doctrine of Chances, the Terms

$$
x y, x x y y, x^{3} y^{3}, x^{4} y^{4}, x^{5} y^{5}, \mho^{8} c .
$$

will refpectively reprefent the Probabilities of continuing together, I, $2,3,4,5, \mathcal{E} c$. Years; and the Value of an Annuity upon the two joint Lives, will be $\frac{x y}{r}+\frac{x x y y}{r r}+\frac{x^{3} y^{3}}{r^{3}}+\frac{x a y^{4}}{r^{4}}+\frac{x y^{5}}{r^{5}} \delta_{c} c$. which being a Geometrical Progreffion perpetually decreafing, the Sum of it will be found to be $\frac{x y}{r-x y}$: let now M be put for the Value of the firt Life, and P for the Value of the fecond, then by our firft Corollary it appears that $x=\frac{M r}{M+1}$, and $y=\frac{P_{r}}{P+1}$; and therefore having written thefe Values of x and y in the Expreffion $\frac{x y}{r-x y}$, which is the Value of the two joint Lives, it will be changed into $\frac{M P_{r}}{\overline{M+1} \times \overline{P+1}-M P_{r}}$: which is the fame Theorem that I had given in my firf Edition.

It is true that in the Solution of Prob. II. I have given a Theorem which feems very different from this; making the Value of the joint Lives to be $\frac{M P}{M+P-d M P}$, whercin d reprefents the $\mathrm{In}-$ tereft of 1 l . and yet I may affure the Reader, that this laft Expreffion is originally derived from the firt; and that whether one or the

314 The Doctrine of Chances applied
other is ufed, the Conclufions will very little differ: but the firft Theorem is better adapted to Annuities paid in Money, it being cuftomary that the laft Payment, whether it be Yearly or HalfYearly, is loft to the Purchafer; whereas the fecond Theorem is better fitted to Annuities paid by a Grant of Lands, whereby the Purchafer makes Intereft of his Money to the laft Moment of his Life: for which Reafon I have chofe to ufe the laft Expreffion in my Book.

By following the fame Method of Inveftigation, we fhall find that if $M, P, 2$, denote three fingle Lives, an Annuity upon thofe joint Lives will be $\frac{M P Q r}{M+1 \times \bar{P}+1 \times 2+1}-\overline{2}+P^{r} r$, in the Cafe of Annuities payable in Money; or $\frac{M P Q}{M P+M Q+P Q-2 d M Q}$, in the Cafe of Annuities paid by a Grant of Lands.

C H A P T ER III.

Containing the Demonftration of the Rules given in Problems $4^{\text {th }}$ and 5 th, for determining the Value of longeft Life.

Let x and y reprefent the refpective Probabilities which two Lives have of continuing one Year in being, therefore $I-x$ is the Probability of the firft Life's failing in one Year, and $\mathrm{I}-\mathrm{y}$ the Probability of the fecond Life's failing in one Year: Therefore multiplying thefe two Probabilities together, the Product $1-x-y+x y$ will reprefent the Probability of the two Lives failing in one Year; and if this be fubtracted from Unity, the Remainder $x+y-x y$ will exprefs the Probability of one at leaft of the two Lives outliving one Year: which is fufficient for eftablifhing the firft Year's Rent.

And, for the fame Reafon $x x+y y-x x y y$ will exprefs the Probability of one at leaft of the two Lives outliving two Years: which is fufficient to eftablifh the fecond Year's Rent.

From the two Steps we have taken, it plainly appears that the longeft of two Lives is expreffible by the three following Series;

$$
\begin{aligned}
& \left.\frac{x}{r}+\frac{x x}{r r}+\frac{x^{3}}{r^{3}}+\frac{x^{4}}{r^{4}}+\frac{x^{5}}{r^{5}}\right] \\
& \left.+\frac{y}{r}+\frac{y y}{r r}+\frac{y^{2}}{r^{3}}+\frac{y^{4}}{r^{4}}+\frac{y^{5}}{r^{5}}\right\} \& \mathrm{cc} \text {. } \\
& \left.-\frac{x y}{r}-\frac{x x y y}{r n}-\frac{x^{3} y y^{3}}{r^{3}}-\frac{x^{4}+y^{4}}{r^{4}}-\frac{x^{5} y y^{5}}{r^{5}}\right\rfloor
\end{aligned}
$$

Whereof the firf reprefents an Annuity upon the firf Life, the fecond an Annuity upon the fecond Life, and the third an Annuity upon the two joint Lives; and therefore we may conclude that an Annuity upon the longeft of two Lives, is the Difference between the Sum of the Values of the fingle Lives, and the Value of the joint Lives: which have been expreffed in Problem IV. by the Symbols $M+P-\overline{M P}$.

In the fame manner it will be found that if x, y, z, reprefent the refpective Probabilities of three Lives continuing one Year, then the Probability of their not failing all three in one Year will be expreffed by $x+y+z-x y-x z-y z+x y z$; which is fufficient to ground this Conclufion, that an Annuity upon the longeft of three Lives, is the Sum of the fingle Lives, minus the Sum of the joint Lives, plus the three joint Lives: which has been expreffed by me, by the Symbols $M+P+2-\overline{M P}-\overline{M Q}-\overline{P Q}+\overline{M P Q}$.

From the foregoing Conclufions, it is eafily perceived how the Value of the longeft of any Number of Lives ought to be determined; viz. by the Sum of the Values of the fingle Lives, minus the Sum of the Values of all the joint Lives taken two and two, plus the Sum of all the joint Lives taken three and three, minus the Sum of all the joint Lives taken four and four, and fo on by alternate Additions and Subtractions.

CHAPTER IV.

Containing the Demonflrations of what bas been faid concerning Reverfions, and the Value of one Life after one or more Lives.
I°. It plainly appears that the prefent Value of a Reverfion after one Life, is the Difference between the Perpetuity, and the Value of the Life in Poffeffion: Thus, if the Life in Poffeffion be worth 14 Years Purchafe, and that I have the Reverfion after that Life, and have a mind to fell it, I mult have for it II Years purchafe, which is the Difference between the Perpetuity 25, and 14 the Value of the Life, when Money is rated at 4 per Cent.
2°. It is evident that the Reverfion after two, three, or more Lives, is the Difference between the Perpetuity, and the longeft of all the Lives.

316 The Doctrine of Chances applied

But the Value of a Life áfter one or more Lives not being fo obvious, I think it is proper to infift upon it more largely : let x therefore reprefent the Probability of the Expectant's Life continuing one Year in being, and y the Probability of the fecond Life's continuing alfo one Year in being, and therefore $1-y$ is the Probability of that fecond Life's failing in that Year; from which it follows, according to the Doctrine of Chances, that the Probability of the firft Life's continuing one Year, and of the fecond's failing in that Year, is $x \times \overline{1-y}$, or $x-x y$; which is a fufficient foundation for drawing the following Conclufion, viz, that the Value of the firft Life after the fecond is the Value of that firft Life minus the Value of the two joint Lives: which I have expreffed by the Symbols $M-\overline{M P}$.

In the fame manner, if x, y, z, reprefent the refpective Probabilities of three Lives continuing one Year, then $x \times \overline{1-y} \times \overline{\mathrm{I}-z}$, will reprefent the Probability of the firft Life's continuing one Year, and of the other two Lives failing in that Year; but the foregoing Expreffion is brought, by actual Multiplication, to its Equivalent $x-x$ $y-x z+x y z$; from whence can be deduced by meer Infpection the Rule given in Prob. VIII. viz. that the prefent Value of the firft Life's Expectation after the Failing of the other two, is $M-\overline{M P}-\overline{M Q}+\overline{M P 2}$

CHAPTERV.

Containing the Demonftration of what bas been afferted in the Solution of the 10 th and 29 th Problems.

In the Solution of the 10 th Problem, $M^{\prime \prime \prime}$ denoting the prefent Value of an Annuity to continue fo long as three Lives of the fame Age fubfint together, let us fuppofe that n denotes the Number of Years during which the Annuity will continue; then fuppofing r to exprefs the Rate of Intereft, it is well known that the prefent Value of that Annuity will be $\frac{1-\frac{1}{r^{n}}}{r-1}$, wherefore we have the Equation $M^{\prime \prime \prime}=$ $\frac{1-\frac{1}{r^{n}}}{r-1}$, or making $r-1=d, M^{\prime \prime \prime}=\frac{1-\frac{1}{r^{n}}}{d^{n}}$, from whence will be deduced $\frac{1}{r^{n}}=1-d M^{\prime \prime \prime}$, and confequently $r^{n}=\frac{1}{1-d M^{\prime \prime \prime}}$. Now let us fuppofe that a Sum \int is to be received to eternity at the.
equal Intervals of Time, denoted by n, and that we want to find the prefent Value of it; it is plain to thofe who have made fome Proficiency in Algebra, that $\frac{f}{r^{n}-1}$ is the prefent Value of it, let us therefore in the room of $r^{\prime \prime}$ fubfitute its Value found before, viz. $\frac{1}{1-d M^{\prime \prime \prime}}$, and then r^{n} - I will be found equal to $\frac{d M^{\prime \prime}}{1-d M^{\prime \prime}}$, and confequently $\frac{\int}{r^{n}-1}=\frac{1-d M^{\prime \prime \prime}}{d S I^{\prime \prime}} \times \int$: as in the Solution of Prob. X.
Now it will be eafy to find n; for let us fuppofe $\frac{1}{1-d M^{\prime \prime}}=\mathcal{T}$, then $r^{n}=\tau$, and therefore $n=\frac{\log \cdot \tau}{\log \cdot r}$.
The ${ }^{2 g t h}$ Problem has fome Affrity with the 10 th; in the former it was required to know the prefent Value of a Sum \int, payable at the Failing of any one of three equal Lives, but in the latter the three Lives are fuppofed unequal ; but befides, it is extended to two other Cafes, viz. to the prefent Value of a Sum \int to be paid after the Failing of any two of the Lives, as alfo to the prefent Value of a Sum δ to be paid after the Failing of the three Lives.
For in the firft Cafe, let us imagine an Annuity to be paid as long as the three Lives are in being; or, which is the fame thing, till one of the Lives fails; and let us fuppofe that R reprefents the Value of the three joint Lives; let us alfo fuppofe that n is the Number of Years after which this will happen, and that d is the Intereft of $1 /$. therefore $\frac{\int}{r^{n}}$ is the prefent Value of the Sum \int to be then paid; but
$R=\frac{1-\frac{1}{r^{n}}}{d}$, therefore $\frac{1}{r^{n}}=\mathrm{I}-d R$, and therefore $\frac{s}{r^{n}}=$ $\overline{1-d R} \times \rho$.
But the fecond Cafe has fomething more of Difficulty, and therefore I fhall enlarge a little more upon it: let us imagine now that there is an Annuity to continue not only as long as the three equal Lives are in being, but as long as any two of the faid Lives are in being ; now in order to find the prefent Value of the faid Annuity, let us fuppofe that x, y, z, reprefent the refpective Probabilities of the faid Lives continuing one Year. Therefore.
1°. $x y z$ reprefents the Probability of their all outliving the Year.
2°. $x y \times \overline{1-z}$, or $x y-x y z$ reprefents the Probability of the two frift outliving the Year, and of the third failing in that Year.
$3^{\circ} \cdot x z \times \overline{1-y}$ or $x z-x y z$ reprefents the Probability of the firt and third's outliving the Year, and of the fecond's failing in that Year.
$4^{\circ} . y x \times \overline{1-z}$, or $y z-x y z$ reprefents the Probability of the fecond and third's outliving the Year, and of the firf's failing in that Year.

Then adding thofe feveral Products together, their Sum will be found equal to $x y+x z+y z-2 x y z$, which is an Indication that the prefent Value of an Annuity to continue as long as two of the faid Lives are in being is $\overline{M P}+\overline{M 2}+\overline{P 2}-\overline{2 M P Q}$, which we may fuppofe $=\tau$.

Let us now compare this with an Annuity certain to continue n Years, the Rate of Intereft being fuppofed $=r$, and $r-\mathrm{I}=d$, then we fhall have the Equation $\frac{1-\frac{1}{r^{n}}}{d}=\mathcal{T}$, from whence we fhall find $\frac{1}{r^{n}}=1-d \mathcal{T}$, and confequently $\frac{\rho}{r^{n}}$, which is the prefent Value of the Expectation required, is $=\overline{1-d T} \times \rho$.

By the fame Method of Procefs, we may find the prefent Value of an Annuity to continue fo long as any one of the three Lives in queftion is fubfifting; for let x, y, z, reprefent the fame things as before.
$1^{\circ} . x y z$ reprefents the Probability of the three Lives outliving the firt Year.
2°. $x y+x z+y z-3 x y z$ reprefents the Probability of two of them outliving the Year, and of the third's failing in that Year.
$3^{\circ} . x \times \overline{1-y} \times \overline{1-z}$, or $x-x y-x z+x y z$ reprefents the Probability of the firf Life's outliving the Year, and of the other two failing in that Year.
$4^{\circ}: y \times \overline{1-x} \times \overline{1-z}$, or $y-x y-z y+x y z$ reprefents the Probability of the fecond Life's outliving the Year, and of the other two failing in that Year.
$5^{\circ}: z \times \overline{1-x} \times \overline{1-y}$, or $z-x z-y z+x y z$ reprefents the Probability of the third Life's outliving the Year, and of the other two failing in that Year.

Now the Sum of all this is $x+y+z-x y-x z-y z+x y z$; which is an Indication that the Value of an Annuity to continue as long as any one of three Lives is in being ought to be expreffed by $M-P+2-\overline{M P}-\overline{M Q}-\overline{P Q}+\overline{M P Q}$: and this laft cafe may be looked upon as a Confirmation of the Rule given in our 5 th Problem. CHAP-

C H A P TER VI.

Containing the Demonfration of what has been faid concerning fucce $\sqrt{\text { Ive }}$ Lives in the Solution of Prob. XIII.

What has been there faid amounts to this; The prefent Values of Annuities certain for any particular Number of Years heing given, to find the prefent Value of an Annuity to continue as long as the Sum of thofe Years.

Let us fuppofe that M reprefents the prefent Value of an Annuity to continue n Years, and that P reprefents the prefent Value of an Annuity to continue p Years; the firf Queftion is, how from there Data to find the prefent Value of an Annuity to continue $n+p$ Years, the Inveftigation of which is as follows: let r be the Rate of Intereft, and fuppofe $r-1$ which denotes the Intereft of $\mathrm{r} l .=d$; then, $I^{\circ} . M=\frac{1-\frac{1}{r^{n}}}{d}$, therefore $\frac{1}{r^{n}}=1-d M$; and for the fame Reafon $\frac{1}{r^{p}}=\mathrm{I}-d P$. Therefore $\frac{1}{r^{n+p}}=\overline{\mathrm{I}-d M} \times$ $\overline{1-d P}=\mathrm{I}-d M-d P+d d M P$. Let now \int be fuppofed to be the Value of the Annuity which is to continue $n+p$ Years, then $\frac{1}{r^{n+p}}=1-d \delta$. Therefore $1-d \int=1-d M-d P+d d M P$; then fubtracting Unity on both Sides, dividing all by d, and changing the Signs, we fhall have $f=M+P-d M P$.
2°. By the fame Method of Procefs, it will be eafy to find that if $M, P, 2$, reprefent Annuities to continue for the refpective Number of Years n, p, q, then the Value of an Annuity to continue $n+p+q$ Years will be $M+P+2-d M P-d M Q-d P Q$ +ddMPQ: the Continuation of which is obvious.

Let us now fuppofe that the Intervals n, p, q, are equal, then the Values $M, P, 2$, are alfo equal; in which Care, the foregoing Canon will be changed into this, $3 M-3 d M M+d^{2} M$, or $\frac{3 d M-3 d d M M+d j M 3}{d}$: but if this Numerator be fubtracted from: Unity, the Remainder will be $1-3 d M+3 d d M M-d^{2} M^{3}=$ 1 = $d M^{3}$; and fubtracting this again from Unity, the original Numerator will be reftored, and will be equivalent to $1-1-d M^{3}$, and confequently, if M reprefents the Value of an Annuity to continue
tinue a certain Number of Years, then $\frac{-\overline{1-d A n} 3}{d}$ will reprefent the Value of an Annuity to continue three times as long.

And univerfally, if M ftands for the Value of an Annuity to continue a certain Number of Years, then $\frac{1-\overline{1-d M^{n}}}{d}$ will reprefent the Value of an Annuity to continue n times as long.

And if n were infinite, I fay that $\overline{I-d M}^{n}$ would be $=0$; from whence the Value would be $=\frac{1}{d}$ or $\frac{1}{r-1}$, which reprefents the Value of the Perpetuity.

But that there may remain no fcruple about what we have afferted above, that in the Cafe of n being infinite, $\overline{1-d M^{n}}$ would vanifh; I prove it thus, $\frac{1}{d}>M$, therefore $\mathrm{I}>d M$, therefore $\mathrm{r}-d M$ is a Fraction lefs than Unity: now it is well known that a Fraction lefs than Unity being raifed to an infinite Power, is nothing, and was therefore fafely neglected.

C H A P T ER VII.

Containing the Demonflration of what bas been afferted in the $3^{2 d}$ and 33 Problems concerning balf-yearly Payments; as alfo the Inveftigation of fome Theorems relating to tbat Subject.

It is well known that if an Annuity A is to continne n Years, the prefent Value of it is $\frac{A-\frac{A}{r^{n}}}{r-1}$; fuppofing r to reprefent the Rate of Intereft; now to make a proper Application of this Theorem to half-yearly Payments, I look upon n as reprefenting indifferently the Number of Payments and the Number of Years; let us now fuppofe a half-yearly Rent B of the fame prefent Value as the former, and to continue as long, then the Number of Payments in this Cale will be $2 n$, but the Rate of Intereft, inftead of being r, is now $r^{\frac{1}{2}}$, which being raifed to the Power $2 n$, will be r^{n} as before; for which

Reafon the prefent Value of the half-yearly Payments is $\frac{r^{n}}{r^{\frac{1}{2}} \lambda_{1}}$: bat by Hypothefis, the prefent Values of the yearly and half-yearly

Pay-

Payments are the fame; therefore $\frac{A-\frac{A}{r^{*}}}{r-1}=\frac{B-\frac{B}{r^{n}}}{r^{\frac{1}{2}}-1}$, and dividing both fides of the Equation by $\mathrm{I}-\frac{1}{r^{n}}$, we fhall have $\frac{A}{r-1}=\frac{B}{r^{\frac{1}{2}-1}}$, from whence will be deduced $B=\frac{r^{\frac{1}{2}}-1}{r-1} \times A$: and in the fame manner, if the Payments were to be made quarterly, then B would $\mathrm{be}=\frac{r^{\frac{\pi}{4}}-1}{r-1} \times A$; and fo on.
But if we fuppofe that a Rent fhall be paid half-yearly, and that it fhall be alfo one half of what would be given for an annual Rent, and that the two Rents fhall be of the fame Duration; then the prefent Values of the yearly and half-yearly Rents will be different: for let M and P be the prefent Values of the yearly and half-yearly Rents, then $M=\frac{A-\frac{A}{r^{n}}}{r-1}$, and $P=\frac{\frac{1}{\frac{1}{2} A-\frac{\frac{3}{2}}{r^{n}}}}{r_{2}^{\frac{1}{2}-1}}$, and dividing both Values by $A-\frac{A}{r^{n}}$, we fhall have $M, P:: \frac{1}{r-1}, \frac{\frac{1}{2}}{r \frac{1}{2}-1}$; and confequently $P=\frac{\frac{r}{2} \times \overline{r-1}}{r_{2}^{\frac{1}{2}-1}} \times M$.

The two laft Problems bring to my Mind an Affertion which was maintained, about fix Years ago, in a Pamphlet then publifhed; which was that it would be of great Advantage to a Perfon who pays an Annuity, to difcharge it by half-yearly Payments, each of one half the Annuity in Queftion: the Reafon of which was, that then the time of paying off the Principal would be confiderably fhortened. I had not the Curiofity to read the Author's Calculation, becaure I thought it too long; fince which Time I thought fit to examine the thing, and found that indeed the Time would be fhortened, but not fo confiderably as the Author imagined: which to prove, I fuppofed a Principal of 2000 . an Annuity of 100%. and the Rate of Intereft 1.04: in confequence of which, I found that the Principal would be difcharged in 41 Years; this being founded on the general Theorem $A-\frac{A}{r^{n}}$ $\frac{r}{r-1}=P$, in which A reprefents the Annuity, P the Principal, r the Rate of Intereft, and n the Number of Years: now to apply this to the Cafe of half-yearly Payments, let us fuppofe that p denotes the Number of Years in which the Principal will be difcharged ; therefore $2 p$ will be the Number of Payments, $\frac{1}{2} A$ the Annuity, and $r^{\frac{1}{2}}$ the Rate of Interef: which being refpectively fubflituted in the Room of
n, A, r, we fhall have now $\frac{\frac{1}{2} A-\frac{\frac{3}{2} A}{r^{2}}}{r^{\frac{1}{2}-1}}=P$, but $r^{\frac{1}{2}}-1=0.019804$. which being fuppofed $=m$, we fhall have $\frac{1}{2} A-\frac{\frac{1}{2} A}{r^{P}}=m P$, and $\frac{\frac{3}{2} A}{r^{p}}=\frac{1}{2} A-m P$, or $\frac{50}{r^{P}}=10.392$; therefore $\frac{r^{p}}{5^{p}}=\frac{1}{10.39^{2}}$, or $r^{p}=\frac{50}{10.392}$, and $p \log . r=\log .50-\log .10 .392=0.6822709$; therefore $p=\frac{0.6822700}{\lg \cdot r} ;$ again, log. $r=0.0170333$, therefore $p=$ $\frac{0.06822700}{0.0170333}=40.05:$ and therefore the Advantage of paying halfyearly would amount to no more than gaining one Year in 41 .

Quarterly Payments, or half-quarterly, nay even Payments made at every Inflant of Time, would not much accelerate the Difcharge of the Principal. Which to prove; let us refume once more our ge-

$$
\text { neral Theorem } \frac{A-\frac{A}{r^{n}}}{r-1}=P \text {; let us now imagine that the Number }
$$ of Infants in the Year is $=t$, let us further fuppofe that s is the Number of Years in which the Principal will be difcharged, then in the room of A, writing $\frac{1}{8} A$; in the room of r, writing $r^{\frac{1}{4}}$; and in the room of n, writing $s t$, we fhall have $\frac{\frac{1}{t} A-\frac{\frac{1}{7} A}{r^{2}}}{\frac{\frac{x}{5}}{r^{2}}-1}=P$. But it is known, that if t reprefents an infinite Number, fuch as is the Number of Inftants in one Year, then $r^{\frac{1}{t}}-1=\frac{1}{t} \log r$, we have therefore $\frac{\frac{1}{t} A-\frac{\frac{1}{t} A}{r^{2}}}{\frac{1}{t} \log \cdot r}=P$, or $\frac{A-\frac{A}{r^{r}}}{\log \cdot r}=P$; let the Logarithm of r be fuppofed $=a$, therefore $A-\frac{A}{r^{2}}=a P$, and $\frac{A}{n^{2}}=A-a P$, and $r^{\prime}=\frac{A}{A-a P}$, which fuppofe $=2$, then $s=\frac{\log \cdot Q}{\log \cdot \cdot}:$ But it is. to be noted, that a reprefents the hyperbolic Logarithm of r, which is, as we have feen before, 0,0392207 when r ftands for 1,04 ; this, being fuppofed, the Logarithm of 2 will be found to be 0,6663794 , which being divided by the Logarithm of r viz. 0,0170333 , the Quotient

Quotient will be 39,1 Years; but in this laft Operation the Logarithms of 2 and r, may be taken out of a common Table.

CHAPTER VIII.

Containing the Demonftration of what bas been faid concerning the Probabilities of Survivor/hip.

What I call Complement of Life having been defined before pag. 265. I fhall proceed to make ufe of that Word as often as occafion fhall require.

Let it be fuppofed that the Complement of Life $A S$ being divided into an infinite Number of equal Parts reprefenting Moments, the Probabilities of living from A to B, from A to C, from A to $D, \Xi^{\circ} c$. are refpectively proportional to the feveral Complements $S B, S C$, $S D$, in fo much that thefe Probabilities may refpectively be reprefented by the Fractions $\frac{S B}{S A}, \frac{S C}{S A}, \frac{S D}{S A}, \mathcal{E}$. This Hypothefis being admitted the following Corollaries may be deduced from it.
Corollaryi.

The Probability of Life's failing in any Interval of Time $A F$ is meafured by the Fraction $\frac{F A}{S A}$.

Corollary II.

When the Interval $A F$ is once paft, the Probability of Life's continuing from F to G is $\frac{S G}{S F}$, for at F, the Complement of Life is $S F$, and the Probability of its failing is $\frac{F G}{S F}$.

Coroleary III.

The Probability of Life's continuing from A to F, and then failing from F to G; is $\frac{S F}{S A} \times \frac{F G}{S F}=\frac{F G}{S A}$.

Corollary IV.

The Probability of Life's failing in any two or more equal Intervals of Time affigned between A and S are exactly the fame, the Eftimation being made at A confidered as the prefent Time.

Thefe things premifed, it will not be difficult to folve the following Problem.

Troo Lives being given, to find the Probabilty of one of them fixed ufon, furviving the otber.

For, let the Complements of the two Lives be refpectively $A S=n$ and $F S=p$, upon which take the two Intervals $A B, F C=z$, as alfo the two Moments $B b, C c=\dot{z}$.

The Probability of the firft Life's continuing from A to B, or beyond it, is $\frac{n-z}{n}$; the Probability of the fecond's continuing from F to C, and then failing in the Interval $C c$, is by the third Corollary $\frac{\dot{z}}{p}$: therefore the Probability of the firft Life's continuing during the time $A B$ or beyond it, and of the fecond's failing juft at the end of that Time, is meafured by $\frac{n-z}{n} \times \frac{\dot{z}}{p}=\frac{n \dot{z}-z z}{n p}$, whofe Fluent $\frac{n z-\frac{1}{2} z z}{n p}$ will exprefs the Probability of the firf Life's continuing during any Interval of Time or beyond it, and of the fecond's failing any time before or precifely at the end of that Interval.

Let now p be written inftead of z, and then the Probability of the firft Life's furviving the fecond, will be $\frac{n p-\frac{5}{2} p p}{n p}=1-\frac{\frac{1}{2} p}{n}$.

From the foregoing Conclufion we may immediately infer that the Probability of the fecond Life's furviving the firft is $\frac{\frac{1}{2} p}{n}$.

By the fame method of arguing, we may proceed to the finding the Probability of any one of any Number of given Lives furviving all the reft, and thereby verifying what we have faid in Prob. XVIII. and XIX.

C H A P T E R IX.

Serving to render the Solutions in this Treatije more general, and more correct.

I.

Altho', in treating this fubject of Annuities, I have made ufe only: of Dr. Halley's Table, founded upon the Breflaw Bills of mortality; from which I deduced the Hypotbefis of an equable Decrement of Life: Yet are my Rules eafily applicable to any other Table of Obfervations; by Prob. II. of my Letter to Mr. Jones in Pbil. Tranf. $\mathrm{N}^{\circ} .473$, which the Reader may fee below, in the Appendix.

Or inftead of the Theorem there given, he may ufe that by which Prob. XXVI. was refolved, which is rather more independent of Tables: And its application to our prefent purpofe may be explained as follows.

As in all Tables of Obfervations deduced from Bills of mortality, or if we fhould combine feveral of them into one, it will be found that, for certain Intervals at leaft, the Decrements of Life continue nearly tbe fame; if we conceive the whole Extent of Life to be reprefented by a right Line $A Z$, in which there are taken diftances $P Q, 2 R, R S, \& c$. proportional to thofe Intervals, and at the points $P, 2, R, S, \& c$. there be erected perpendiculars proportional to the Numbers of the Living at the beginning of the refpective Intervals, and their Extremities are connected by right Lines; then there will be formed a Polygon Figure on the Bafe $A Z$, whofe Ordinates will every where reprefent the Numbers of that Table from which the Figure was conftructed; and the Inclinations of the Sides of the Polygon to its Bafe will exprefs the Convergencies of Life to its End, or the Degrees of Mortality belonging to the refpective Intervals.

Say therefore, as the difference of the Ordinates at P and 2 , is ta the Ordinate at P : fo is the Interval $P Q$, to a fourth $P Z^{\prime}$; and $P Z^{\prime}$ fhall be the Complement of Life at the age P; and the Point Z^{\prime} int the Bafe fhall be that from which the Complements are to be reckoned throughout the Interval $P Q$.

Let $P Z^{\prime}$, thus found, be fubitituted for n in the Canon of Prob. XXVI, and the Interval $P Q$ for m, fo fhall the Value of that Interval be known: and in like manner the fubfequent Values of $2 R, R S$; \&c. giving to each Interval its proper Complement $2 Z^{\prime \prime}, R Z^{\prime \prime \prime}, \& c$.

And laftly, thefe Values being feverally difcounted, Firf, in the Ratio of their refpective Ordinates at $P, 2, R, \& c$. to fome preceding Ordinate as at N, at the Age 12, for inftance; and Secondly, by the prefent Value of il. payable after the Years denoted by $N P$, $N 2, N R, 8 \mathrm{c}$. their Sum will be the Value of the Life at N, according to the given Table of Obfervations. After which, the younger Lives muft be computed from Year to Year: as thofe after 70 , or when an Interval contains but one Year, ought likewife to be computed.

If it is propofed, for Example, to find how nearly my Hypothe is agrees with Dr. Halley's Table for the Interval of 8 Years between 33 and 4I, it's Value, at 5 per Cent. computed by Prob. XXVI. will, to an Annuitant 33 Years old, be 5.9456 , according to the Hy potbefis. But the Numbers of the Living at thofe Ages being, in the Table, 507 and 436 , if we compute immediately from it, we muft take $n=\frac{507}{71} \times 8=57.14$; and the fame Rule will give the Value 5.983 I . Difcount now the Values found as belonging to a Life of 12 Years; that is multiply the firtt by $\frac{53}{74}$, and the other by $\frac{507}{640}$; and the Products $4.25^{8} 3$ and 4.6957 difcounted the fecond time, that is, multiplied by $.35^{8}$, the prefent Value of 11 . payable after 21 ($=33-12$) Years gives the Values 1.5283 and 1.6853 ; the difference being 0.157 , near $\frac{1}{6}$ of a Year's purchafe.

In general, the Hypotbefis will be found to give the Value of a fingle Life, or of an affigned Interval, fomewhat below what the τ_{a} ble makes it: but then, as both the young and the middle aged are obferved to die off fafter in England than at Breflaw, my Rules may very well be preferable, for the Purchafes and Contracts that are made upon fingle Lives in this Country.

In the fame manner may any other Tables be compared with the Hypotbefis, and with one another. And if we give the preference to any particular Table, and would at the fame time retain the Hypothefis of equal Decrement we may, by the differential Method, eafily find that mean Termination of Life, Z, which Thall beft correfpond to the Table.

II.

To preferve fomewhat of Elegance and Uniformity in my Solutions, as well as to avoid an inconvenient multiplicity of Canons and Symbols, 1 did transfer the Decrement of Life from an Aritbmetical to a Geo-
metrical Series: which however, in many Queftions concerning Combined Lives, creates an error too confiderable to be neglected. This hath not efcaped the Obfervation of my Friends, no more than it had my own : but the fame Perfons might have obferved likewife, that fuch Errors may, when it is thought neceffary, be corrected by my own Rules; particularly upon this obvious principle, That, if money is fuppofed to bear no Intereft, the Values of Lives woill coincide with wbat I call tbeir Expectations.
But as the Computation of fuch Corrections might feem tedious; and becaufe practical Rules ought to be of ready Ufe, as well as fufficiently exact; I chufe rather to give another Rule for joint Lives, which will anfwer both thefe Purpofes; at the fame time that it is general, and eafily retained in the Memory.

General Rule for the Valuation of joint Lives.
The given Ages being each increafed by unity, find, by Problem XXI. or XXII. the Number of Years due to their joint Continuance; and the Complement of twice this Number to 86, taken as a fingle Life, will, in the proper Table, give nearly the V alue required.

Examplei.

The Value of two joint Lives of 40 and 50 , at 5 per Cent. was, in Prob. II. found to be 7.62 . But if they are made 41 and 5 I , their joint Expectation, by Prob. XXI. will be I3 Years, thefe: doubled and taken from 86 leave 60 , againft which in Table VIII, ftands 8.39 Years purchafe, nearly the Value fought.

ExAMPLE 2 .

The 3 joint Lives whofe fingle Values, at 4 per Cent. are I3, I4, ${ }_{15}$ Years purchafe, are in Prob. II. worth 7.4I. But by Table VI, the Ages to which thefe Values belong, increafed by Unity, are $42,36,28$; whofe Complements to 86 fubftituted for p, n, q, in $\frac{1}{2} p-\frac{p^{2} \times \overline{n+q}}{6 n q}+\frac{p^{3}}{12 n q}$, the Canon for the Expectation of 3 joint Lives, gives 12.43 . And $86-2 \times 12.43$ is nearly 6I; at which Age a. fingle Life, in Table VI, is worth 8.75 Years purchafe.

It is needlefs to add any thing concerning longeft Lives, SurvivorAhips, Reverfions and Infurances; the Computation of their Values: being:

328. The Doctrine of Chances applied \&c.

being only the combining thofe of fingle and joint Lives, by Addition and Subtraction: which being performed according to the Rules of this Treatife, the Anfwer may be depended upon as fufficiently exact; in all ufeful Queftions, that can occur. For, we do not here aim at an Accuracy beyond what the determination of our main Data, the Probabilities of human Life, and the conformity of our Hypothefis to nature, can bear ; nor do we give our Conclufions for perfectly exact, as is required in fuch as are purely arithmetical, but only as very near Approximations; upon which bufinefs may be tranfacted, without confiderable Lofs to any party concerned:

III.

The fame Rule ferves for the Cafe of an Annuity fecured, upon joint Lives, by a Grant of Lands; or when the fractional part of the laft Year is to be accounted for. Only, in this Cafe, 1°. The Addition of Unity to cach. Life is to be omitted. 2°. The fingle Life is not now to be taken out of our Tables, or computed from $\frac{1-\frac{r}{n} P}{1-1}$ the Canon of Prob. I, but from $\frac{1}{r-1}-\frac{1}{a n} P$, a being Neper's Logarithm of r : as in Phil. Tranf. No. 473, and in Cbap. I. foregoing.

According to which, if the Ages and Intereft are as in Example I; the Expectation of joint Life will be 13.3 Years; and thence $n=$ 26.6; $P=14.5358 ; a=.04879$: And the Value of the Annuity 20-11.2 $=8.8$; exceeding what it would have been upon yearly Payments by about $\frac{4}{10}$ of a Year's purchafe.

And if the Payments are half yearly or quarterly, the $\mathfrak{f k i l l f u l}$ Computift cannot be at a lofs after what has been faid of thofe Cafes in Cbap. VII *.

[^6]
$F \quad I \quad N \quad I \quad S$.

A P P E N D I X.

No. I.
Dedication of the Firf Edition of this Work (1718.)
TO

Sir Isaac Newton, Kt. Prefident of the Royal Society.

S I R,

THE greateft Help I have received in writing upon this Subject having been from your incomparable Works, efpecially your Method of Series; I think it my Duty publickly to acknowledge, that the Improvements I have made, in the matter here treated of, are principally derived from yourfelf. The great benefit which has accrued to me in this refpect, requires my fhare in the general Tribute of Thanks due to you from the learned World: But one Advantage which is more particularly my own, is the Honour I have frequently had of being admitted to your private Converfation; wherein the Doubts I have had upon any Subject relating to Matbematics, have been refolved by you with the greateft Humanity and Condefcenfion. Thofe marks of your Favour are the more valuable to me, becaufe I had no other pretence to them but the earneft defire of underftanding your fublime and univerfally ufeful Speculations. I fhould think my felf very happy, if having given my Readers a Method of calculating the Effects of Chance, as they are the refult of Play, and thereby fixing certain Rules, for eftimating how far fome fort of Events may rather be owing to Defign than Chance, I could by this fmall Effay excite in others a defire of profecuting thefe Studies, and of learning from your Philofophy how to collect, by a juft Calculation, the Evidences of exquifite Wifdom and Defign, which appear in the Pbenomena of Nature throughout the Univerfe. I am, with the utmof Refpect,

$$
\begin{aligned}
& \text { Sir, } \\
& \text { Your moft tumble, }
\end{aligned}
$$

№. II.

Note ufon Coroll. I. Prob. VII; and upon Prob. IX.
In that Corollary, it was found that the Probabilities of winning all each others Stakes being as $a^{q} \times \overline{a^{p}-b^{p}}$ and $b^{p} \times \overline{a^{q}-b^{q}}$; If we divide by $a-b$, and fuppofe the Chances for one Game to be equal, or $a=b$; then the Probabilities will be as the Number of pieces, or, in the Ratio of p to q.

Bnt when we have to divide fuch Expreffions continually, that is by fome Power of $a-b$, as $\overline{a-b})^{2}, \overline{a-b} \backslash^{4}, \& c$. it will be more convenient to ufe a General Rule for determining the Value of a Ratio whofe Terms vanifh by the contrariety of Signs. The Rule is this;

For the difference of the 2uantities that deftroy each other in any Cafe propofed, surite an indeterminate 2uantity \bar{x}; in the Refult reject all thofe Terms that vanifb when x becomes lefs than any finite Quantity: So ball the remaining bomogeneous Terms, divided by their greateft common Meafure, expre/s the Ratio fought.
As in our example, if we make $a-b=x$, or $a=b+x$, and for a^{p}, a^{q}, write their equals $\overline{b+x} p, \overline{b+x}{ }^{q}$, expanded by the Binomial Theorem; the Ratio of R to S, in Prob. VII, will be reduced to that of $p^{b^{p+q-1}} \times x+p \cdot \frac{p-1}{2}+p q \times b^{p+q-2} \times x^{2}+8 c$. to $q b^{p+q-1}$ $\times x+q \cdot \frac{q-1}{2} \times b^{p+q-2} \times x^{2}+\& c$: Of which retaining only the two Terms that involve x, and dividing them by $b^{p+q-1} \times x$, we get ${ }_{R}^{R}=\frac{p}{q}$.
The Solution of Prob. IX. gives for the Gain of A the Product $\frac{q a^{q} \times \overline{a^{p}-b^{p}}-\hat{b} b^{p} \times \overline{a^{q}-b^{q}}}{a^{p+q}-b^{p+q}}$ by $\frac{a G-b L}{a-b}$: and when $a=b$, if we fubftitute as before, the Terms involving x vanifh in the Numerator of the firft of thefe Factors; reduclng it to ${ }^{*} *+\frac{p q}{2} \times \overline{p+q} \times$ $b^{p+q-2} \times x^{2}+\& c:$ and the Denominator is $* \overline{p+q} \times b^{p+q-1} \times x+$ $\& c$. The other Factor is $\frac{b \times \overline{G-L}+x G}{x}$, or when x vanifhes with refpect to $b, \frac{b \times \overline{(--L}}{x}$; and the Product of the two is $p q \times \frac{G-L}{2}$;

$A \quad P \quad P \quad E \quad N D I X$.

as in Cafe 2. Cafe 1 follows immediately from this; and the 3 has as little difficulty.

Another Example of our Rule may be; To find, from the Canon of Prob. I. of the Treatife on Annuities, the Expectation of a Life zobofe Complement is n ; that is, the prefent Value of. a Rent or Annuity upon that Life, money bearing no Intereft. Now that Canon being $\frac{1-\frac{r}{n} P}{r-1}$, or $\frac{n-r P}{n \times r-1}$, if for P we write its equal $\frac{1-r^{-n}}{r-1}$, and $I+x$ for r, the Value fought will be $\frac{n-n-r+r^{1-n}}{n \times t-n^{2}}=* *+$
$\frac{\overline{1-n} \times-\frac{n}{2} \times x^{2}+\& c .}{n x^{2}}=\frac{n-1}{2}$.
This Value wants half a year of $\frac{n}{2}$, its quantity according to the Rule given above, pag. 288: becaufe there the Probabilities of Life were fuppofed to decreafe as the Ordinates of a Triangle; whereas, in the Hypothefis of yearly payments in Prob. I, they decreafe per faltum, like a Series of parallelograms infcribed in a Triangle.

The Reader will likewife obferve that our general Rule for computing the Value of a Fraction whofe form becomes $\frac{0}{0}$, is in effect the fame as that given by the Marquis de l'Hopital in his Analyje des infinimens petits. And that, from the Number of Terms that vanifh in the Operation, and from the Sign of the Term which determines the Ratio, the Species of algebraical Curve Lines, and the Pofition of their Branches, are difcovered. See Mac Laurin's Fluxions, Book I. Chap. 9. and Book II. Chap. 5.

Note to Prob. XLV. from Mr. Nicolas Bernoulli, Phil. Tranf. 34 r.
To find the Probability that a Poule Mall be ended in a given Number of Games: a Series of Fractions beginning with $\frac{1}{2^{n}-1}$, whofe Denominators increafe in a double proportion, and the Numerator of each Fraction is the Sum of as many next preceding Numerators as there are Units in $n-1$, will give the fucceffive Probabilities that the Poule fhall be ended precijely in $n, n+1, n+2$, $n+3$, \&c. Games; and confequently if as many Terms of this Series are added together, as there are units in $p+1$, their Sum will exprefs the Probability that the Poule fhall be ended at leaft in $n+p$ Games. For Example, if there are 4 Players, and thence $n=3$, we fhall have this Series $\frac{1}{4}, \frac{1}{8}, \frac{2}{16}, \frac{3}{3^{2}}, \frac{5}{64}, \frac{8}{128}, \frac{13}{250}, \frac{21}{512}, 8 \mathrm{c}$. Out of which if we form this other $\frac{1}{4}, \frac{3}{8}, \frac{8}{16}, \frac{19}{32}, \frac{43}{64}, \frac{94}{128}$, $\frac{201}{256}$, \&cc. whofe Terms are the Sums of the Terms of former Series, thefe laft will fhew the Probability of the Poule ending in 32 $4,5,6, \& \mathrm{c}$. Games, at leaft.

$A P P$	$N D X X$
No. IV.	
ment to bis Mifcellanea Analytica.	
7076 30328.7678	460. . . . د026.82368.84245.7267.
18.38612 .46168 .7770.	470. . . . 1053.50280 .26009 .6230.
30. . . 32.42366 .00749 .2572.	480 1080.27422 .85779 .2496.
O.... 47.91164.50681.5991.	490. . . . 1107.13604 .49151 .6763.
$64.48307 \cdot 4^{8} 724.7209$.	500. . . . 1134.08640 .85351 .3508.
81.92017 .48493 .9024.	51C. . . . 1161.12355 .00246 .5923.
$70 . . .100 .07840 .50356 .8004$.	$5201188 .24576 .93048 .6770$.
80.... 118.85472 .77224 .9966.	530.... $1215.45143 .16339 .625^{1}$.
$9=. . .138 .17193 .57900 .1086$.	54 C 1242.73896 .39114 .8380 \%
100.... 157.97000.36547.1585.	550....1270.10635.12561.5931.
O. . . 1788.20091 .76443 .7008.	$5^{60}1297 .55363 .383^{2} 4.8209$.
0. . . 198.82539.38+72.1977.	570. . . . 1325.07790 .39038 .212 I .
$130 . . .219 .81069 .31561 .4815$.	$580 . . .1352 .67830 .30922 .0491$.
$140 . .$. 241.12910.99886.9689.	590. . . . 1380.35351 .98269 .6983 -
$150 . . .262 .75689 .34109 .2616$.	600. . . . 1408.10228.69662.7898.
$160 . . .284 .67345 .62406 .8298$.	61c\|. . . . 1435.9233795771 .1124.
. . . 306.86078 .19948 .2847 .	$620 . . .1463 .81561 .28607 .3923$.
. . . . 329.30297.14247.9393.	630 . . . 1491.77784 .02119 .6951.
O. . . . $351.98588 .98339 \cdot 3535 \cdot$	640. . . . 151980895.140153428.
200.... 374.89689.86400.4044.	65 C . . . 154790787.08720 .1888.
$210 . .$.	660 1576.07355 .61385 .9540.
$220 . \text {. . } 4^{21.35866 .95421 .3259 . ~}$	67c... . . 1604.30499.62866.2770.
$230 . . .444 .88978 .265146048$.	680.... 1632.60121 .05589 .2142.
240 . . . 468.60936.87056.479 +.	6gc. . . . 166096124.70260 .3147.
$250492 .50958 .63954 .6190$.	700.... 1689.38418.13336.1091.
$260 . . .55^{16.58322 .09826 .1269 . ~}$	$7 \mathrm{Ic}1717 .86911 .55213 .0: 34$
270... 540.82361 .20667 .5295.	$720 \ldots 1746.41517 .69081 .2925$
280.... 565.22459 .20470 .1654.	730. . . 1775.02151 .70397 .9157.
290. . . $5^{89} 9.78043 .33690 .9860$.	$740 \text {... } 1803.68731 .06935 .9463$
300. . . 614.48580 .30437 .7387.	$750 . .$. . $1832.41175 .49371 .5144^{\circ}$
$310 . . .639 .33572 .32255 .0106$.	$760 . . .1861 .19406 .82372 .5655$.
$320 . . .664 .32553 .68741 .5328$.	$7701890 .03348 .961563791 .$.
330.... 689.45087.77060.3823.	$788 . \ldots 19.18 .92927 .78485 .4396$.
340.... 714.70764 .378465691.	790 . . . 1947.88071.07073.5663.
0. . . . 740.09197 .42162 .3279.	800 . . . 1976.88708.42376.3542..
360. . . $765.6=02285067.1998$.	810... 2005.94771 .20741 .9152.
$370 . . .791 .22896 .82108 .4658$.	820.... 2035.0619247899.6883.
$380816 .97493 .05^{6} 36.3600$.	830... $2064.22906 .92766 .7182 .$.
$11_{1} \cdot 842.83506 .3^{8} 337.0506$	$840 . . .2093 .4485081552 .2793$.
400. . . 868.80641.41777.2588.	850....2122.71961.92143.1027.
410.... 894.88621 .38085 .1630.	860.... 2152.0417948752 .7013.
$420 . . .9921 .07182 .03166 .5465$.	870... $2181.41444 .168194477{ }^{\circ}$
$430 . . .994 .36071 .70082 .7526$.	880.... $2210.83697 .98139 .1145^{\circ}$
440.... $973 \cdot 75050.41416 .4285$.	890... . $2.240 .30884 .26218 .5633^{*}$
	900.... 2269.82947 .61838 .1577.

334

$A \quad P \quad P \quad E \quad N \quad D \quad I \quad X$.

If we would examine thefe Numbers, or continue the Table farther on, we have that excellent Rule communicated to the Author by Mr. Fames Stirling ; publifhed in his Supplement to the Mifcellanea Analjtica, and by Mr. Stirling himfelf in his Metbodus Differentialis, Prop. XXVIII.
" Let $z-\frac{1}{2}$ be the laft Term of any Series of the natural Num" bers $1,2,3,4,5 \ldots \ldots \ldots z-\frac{1}{2} ; a=43429448190325$ the reci"procal of Neper's Logarithm of 10: Then three or four Terms of " this Series $z \log . z-a z-\frac{a}{2.12 z}+\frac{70}{8.300 z^{3}}-\frac{31 a}{3^{22.1260 z^{5}}}+\frac{127 a}{1281680 z^{7}}$ " - \&c. added to 0.399089934 179, \&cc. which is half the Loga"rithm of a Circumference whofe Radius is Unity, will be the Sum " of the Logarithms of the given Series; or the Logarithm of the "Product $1 \times 2 \times 3 \times 4 \times 5 \cdots-\cdots \times \overline{z-\frac{1}{2}}$ ""

The Coefficients of all the Terms after the firft two being formed as follows.

$$
\begin{aligned}
& \text { Put }-\frac{1}{3 \cdot 4}=A \\
&-\frac{1}{5 \cdot 8}=A+3 B \\
&-\frac{1}{7 \cdot 12}=A+10 B+{ }_{2} C \\
&-\frac{1}{9 \cdot 16}=A+2 \mathrm{I} B+35 C+7 D \\
&-\frac{1}{11 \cdot 20}=A+36 B+126 C+84 D+9 E \\
& \& c .
\end{aligned}
$$

In which the Numbers $\mathrm{I}, \mathrm{I}, \mathrm{I}, 8 \mathrm{c} .3, \mathrm{IO}, 2 \mathrm{I}, 36,8 \mathrm{c} .5,35,126$, $\& \mathrm{c}$. that multiply $A, B, C, 8<c$. are the alternate Uncice of the odd Powers of a Binomial. Then the Coefficients of the feveral Terms will be $\frac{1}{2} \times A=-\frac{1}{2.12}, \frac{1}{2}^{3} \times B=\frac{7}{8.360}, \frac{1}{2}{ }^{5} \times C=\frac{31}{32.1260}$, \& c . See the general Theorem and Demonftration in Mr. Stirling's Propofition quoted above.

$$
\mathrm{N}^{\mathrm{o}} . \mathrm{V} \text {. }
$$

Some UJeful Cautions.

One of the moft frequent occafions of Error in managing Problems of Chance, being to allow more or fewer Chances than really there are ; but more efpecially in the firf Cafe, for the fault lies commonly that way, I have in the Introduction taken great care to fettle the Rules of proceeding cautioully in this matter; however it will not be amifs to point out more particularly the danger of being miftaken.

Suppore

$$
A P P P E X D \quad I \quad X .
$$

Suppofe therefore I have this Queftion propofed; There are two Parcels of three Cards, the firft containing King, Queen, and Knave of Hearts, the fecond the King, Queen, and Knave of Diamonds, and that I were promifed the Sum S, in cafe that in taking a Card out of each Parcel, I fhould take out either the King of Hearts, or the King of Diamonds, and that it were required 1 fhould determine the value of my Expectation.

If I reafon in this manner; the Probability of taking out the King of Hearts is $\frac{1}{3}$, therefore $\frac{1}{3} \int$ is my due upon that account ; the Probability of taking out the King of Diamonds is alfo $\frac{1}{3}$, and therefore that part of my Expectation is $\frac{1}{3} \int$ as the other was, and. confequently my whole Expectation is $\frac{2}{3} \int$; this would not be a legitimate way of reafoning: for I was not promifed that in cafe I fhould take out both Kings, I mould have the Sum 2/, but barely the Sum f. Therefore we muft argue thus; the Probability of taking out the King of Hearts is $\frac{1}{3}$, the probability of miffing the King. of Diamonds is $\frac{2}{3}$, and therefore the probability of taking out the King of Hearts, and miffing the King of Diamonds is $\frac{1}{3} \times \frac{2}{3}=\frac{2}{9}$, for which reafon that part of my Expectation which arifes from the probability of taking out the King of Hearts, and mifing the King of Diamonds is $\frac{2}{9} \int$; for the fame reafon that part of my Expectation which arifes from the probability of taking the King of Diamonds and miffing the King of Hearts is $\frac{2}{9} \int \sqrt{2}$ but I ought not to be deprived of the Chance of taking out the two Kings of which the probability is $\frac{1}{9}$, and therefore the value of that Chance is $\frac{1}{9} \int$; for which reafon, the value of my whole Expectation is $\frac{2}{9} \int+\frac{2}{9} \int+\frac{1}{9} \int=\frac{5}{9} \int$ which is lefs by $\frac{1}{9} \int$ than $\frac{2}{3} \int$.

But fuppofe I were propofed to have $2 \int$ given me in cafe I'took out both Kings, then this laft Expectation would be $\frac{2}{9} /$; which would make the whole value of my Expectation to be $\frac{2}{9} \int-$ $\frac{2}{9} \int+\frac{2}{9} \int=\frac{6}{9} \int=\frac{2}{3} \int$.

One may perceive by this fingle inflance, that when two Events are fuch, that on the happening of either of them I am to have a Sum f, the probability of that Chance ought to be eftimated by the Sum of the Probabilities of the happening of each, wanting the probability of their both happening.

But not to argue from particulars to generals. Let x be the probability of the happening of the firf, and y the probability of the happening of the fecond, then $x \overline{\times 1-y}$ or $x-x y$ will reprefent the probability of the happening of the firt and failing of the fecond, and $y \times \overline{1-x}$ or $y-x y$ will reprefent the probability of the happening of the fecond and failing of the firf, but $x y$ reprefents the happening of both; and therefore $x-x y+y-x y+x y$ or $x+y-x y$ will reprefent the probability of the happening of either.

This conclufion may be confirmed thus; I $-x$ being the probability of the firft's failing, and $x=y$ the probability of the fecond's failing, then the Product $\overline{1-x} \times 1-y$ or $1-x-y+x y$ will reprefent the probability of their both failing; and this being fubtracted from Unity, the remainder, viz. $x+y-x y$ will reprefent the probability of their not both failing, that is of the happening of either.

And if there be three Events concerned, of which the Probabilities of happening are refpectively x, y, z, then multiplying $\mathbf{I}-x$ by $1-y$ and that again by $1-z$, and fubtracting the Product from Unity, the remainder will exprefs the probability of the happening of one at leaft of them, which confequently will be $x-1-y+z-x y$ - $x z-y z+x y z$; and this may be purfued as far as one pleafes.

A difficulty almoft of the fame nature as that which I have explained is contained in the two following Queftions: the firft is this;

A Man throwing a Die fix times is promifed the Sum \int every time he throws the Ace, to find the value of his Expectation.

The fecond is this; a Man is promifed the Sum / if at any time in fix trials he throws the Ace, to find the value of his Expectation.

In the firft Queftion every throw independently from any other is entitled to an Expectation of the Sum \int, which makes the value of the Expectation to be $\frac{1}{6} \int+\frac{1}{6} \int+\frac{1}{6} \int+\frac{1}{6} \int+\frac{1}{6} \int+\frac{1}{6} \int=f$; but in the fecond, none but the frit throw is independent, for the fecond has no right but in cafe the firft has failed, nor has

$A P P B \quad N D I X$.

the third any right but in cafe the two firft have failed, and fo on; and therefore the value of the Expectation being the Sum expected, multiplied by the Sum of the Probabilities of the Ace's being thrown at any time, exclufive of the Probabilities of its having been thrown before, will be $\frac{1}{6} \int+\frac{:}{30} \int+\frac{25}{210} \int+\frac{125}{1296} j+$ $\frac{625}{7776} \int+\frac{3125}{46656} \int=\frac{31031}{46556}$ that is nearly $\frac{2}{3} \int$.

We may alfo proceed thus; the probability of the Ace's being miffed fix times together is $\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6}=\frac{15625}{45050}$, and therefore the probability of its not being miffed fix times, that is of its happening fome time or other in 6 throws is $1-\frac{16,62}{40050}$ $=\frac{31031}{46050}$, and confequently the value of the Expectation is $\frac{31031}{46.55^{\circ}}$ as it was found before.

Another Inflance may be, the computing the Odds of the Bet, That one of the 4 Players at Whift fall bave above 4 Trumps. The Solution one might think was by adding all the Chances (in the Tables pag. 177) which the 4 Gamefters have for 5 or more Trumps; and this would be true, were every Gamefter to lay for himfelf in particular. But as it may happen that two of the Gamefters have above 4 Trumps, and yet, as the Bet is commonly laid, only one Stake is paid, half the Number of thefe laft Chances (computed by Prob. XX.) is to be fubtracted: which reduces the Wager nearly to an equality.

$$
\mathrm{N}^{\circ} . \mathrm{VI} .
$$

A Bort metbod of calculating the value of Amuities on Lives, from Tables of Obfervations, In a Letter to W. Jones $E \int_{q}$; Phil. Tranf. $N^{\circ} .473$.

Although it has been an eftablifhed cuftom, in the payment of Annuities on Lives, that the latt rent is loft to the heirs of the late poffeffor of an annuity, if the perfon happens to die before the expiration of the term agreed on for payment, whether yearly, halfyearly, or quarterly: neverthelefs, in this Paper I have fuppofed, that fuch a part of the rent fhould be paid to the heirs of the late poffeffor, as may be exactly proportioned to the time elapfed between that of the laft payment, and the very moment of the Life's expiring; and this by a proper, accurate, and geometrical calculation.

I have been induced to take this method, for the following reafons; firft, by this fuppofition, the value of Lives would receive but

$33^{8} \quad A \quad P \quad P \quad E \quad N \quad D \quad I \quad X$.

an inconfiderable increafe; fecondly, by this means, the feveral intervals of life, which, in the Tables of Obfervations, are found to have uniform decrements, may be the better connected together. It is with this view that I have framed the two following Problems; with their Solutions.

PROBLEM I.

To find the value of an Annuity, fo circumftantiated, that it foall be on a Life of a given age; and that upon the failing of that life, fuch a part of the rent foall be paid to the beirs of the late poffeffor of an Anmuity, as may be exactly proportioned to the time intercepted between that of the laft payment, and the very moment of the life's failing.

Solution.

Let n reprefent the complement of life, that is, the interval of time between the given age, and the extremity of old-age, fuppofed at 86.
r the amount of $\mathrm{I} l$. for one year.
α the Logarithm of r.
P the prefent value of an Annuity of $1 l$. for the given time. 2 , the value of the life fought.
Then $\frac{1}{r-1}-\frac{P}{\alpha n}=2$.
Demonstration.

For, let z reprefent any indeterminate portion of n. Now the Probability of the life's attaining the end of the interval z, and then failing, is to be expreffed by $\frac{z}{n}$, (as fhewn in my book of Annuities. upon Lives) upon the fuppofition of a perpetual and uniform decrement of life.

But it is well known, that if an Annuity certain of I l. be paid during the time z, its prefent value will be $P=\frac{1-r^{\frac{1}{2}}}{r-1}$ or $\frac{1}{r-1}$ $-\frac{1}{r-1 \times r^{2}}$.

And, by the laws of the Doctrine of Chances, the Expectation of fuch a life, upon the precife interval \dot{z}, will be expreffed by $\frac{z}{n \times r-1}-$ $\frac{\dot{z}}{n r^{2} \times r-1}$; which may be taken for the ordinate of a curve, whofe area is as the value of the life required.

$A \quad P \quad P \quad E \quad N \quad D \quad I \quad X$.

In order to find the area of this curve, let $p=n \times \overline{r-1}$; and then the ordinate will become $\frac{\dot{z}}{p}-\frac{\dot{z}}{p r^{r}}$, a much more commodious expreffion.

Now it is plain, that the fluent of the firft part is $\frac{z}{p}$: but as the fluent of the fecond part is not fo readily difcovered, it will not be improper, in this place, to fhew by what artifice I found it ; for I do not know, whether the fame method has been made ufe of by others: all that I can fay, is, that I never had occafion for it, but in the particular circumftance of this Problem.

Let, therefore, $r^{z}=x$; hence z Log. $r=\log . x$; therefore \dot{z} Log. $r=$ (Fluxion of the Log. $x=$) $\frac{\dot{x}}{x}$, or $\alpha \dot{z}=\frac{\dot{x}}{x}$; confequently $\dot{z}=\frac{\dot{x}}{\alpha x}$, and $\frac{\dot{z}}{r^{2}}=\frac{\dot{x}}{\alpha x x}$: but the fluent of $\frac{\dot{x}}{\alpha x x}$ is $\left(-\frac{1}{\alpha x}=\right)$ - $\frac{1}{a r^{2}}$; and therefore the fluent of $-\frac{\dot{z}}{p r^{2}}$ will be $-\frac{r}{p \alpha^{2}}$.

The fum of the two fluents will be $\frac{z}{p}+\frac{1}{p a r^{2}}$; but, when $z=0$, the whole fluent fhould be $=0$; let therefore the whole fluent be $\frac{z}{p}$ $+\frac{1}{p x_{i}{ }^{z}}+q=0$.

Now, when $z=0$, then $\frac{z}{p}=0$, and $\frac{1}{\alpha p r^{2}}$ becomes $\frac{1}{\alpha \beta}\left(\right.$ for $r^{2}=1$, $)$ confequently $\frac{1}{\alpha p}+q=0$; and $q=-\frac{1}{\alpha p}$: therefore the area of a curve, whofe ordinate is $\frac{\dot{z}}{p}-\frac{\dot{z}}{p r^{2}}$ will be $\left(\frac{\tilde{x}}{p}-\frac{1}{\alpha \dot{p}}+\frac{1}{a_{p}, p^{2}}=\right) \frac{z}{p}-$ $\overline{1-\frac{1}{r^{2}}} \times \frac{1}{\alpha p}$.

But $P=\frac{1}{r-1}-\frac{1}{r-1 \times r^{2}} ;$ therefore $\mathrm{I}-\frac{1}{r^{2}}=\overline{r-1} \times P$, and the expreffion for the area becomes $\frac{\tilde{z}}{n \times r-1}-\frac{P}{\alpha n}$: And putting n inftead of z, that area, or the value of the life, will be expreffed by $\frac{1}{r-1}-\frac{P}{a_{n}}$. 2. E. D.

Thofe who are well verfed in the nature of Logarithms, I mean thofe that can deduce them from the Doctrine of Fluxions and infinite Series, will eafily apprehend, that the quantity here called α, is that which fome call the hyperbolic Logarithm ; others, the natural Logarithm: it is what Mr. Cotes calls the Logarithm whofe modulus is 1 : laftly, it is by fome called Neper's Logarithm. And, to fave the reader fome trouble in the practice of this laft theorem, the moft neceffary natural Logarithms, to be made ufe of in the prefent difquifition about Lives, are the following:

$\begin{array}{llllllll}A & P & P & E & N & D & I & X\end{array}$

$$
\begin{aligned}
& \text { If } r=\mathrm{I} .04, \text { then will } \alpha=0.0392207 . \\
& r=\mathrm{I} .05,--\alpha=0.048790 \mathrm{I} . \\
& r=1.06,--\alpha=0.0582589 .
\end{aligned}
$$

It is to be obferved, that the Theorem here found makes the Values of Lives a little bigger, than what the Theorem found in the firf Problem of my book of Annuities on Lives, does; for, in the prefent cafe, there is one payment more to be made, than in the other; however, the difference is very inconfiderable.

But, although it be indifferent which of them is ufed, on the fuppofition of an equal decrement of life to the extremity of old-age; yet, if it ever happens, that we fhould have Tables of Obfervations, concerning the mortality of mankind, intirely to be depended upon, then it would be convenient to divide the whole interval of life into fuch fmaller intervals, as, during which, the decrements of life have been obferved to be uniform, notwithfanding the decrements in fome of thofe intervals hould be quicker, or flower, than others; for then the Theorem here found would be preferable to the other; as will be Shewn hereafter.

That there are fuch intervals, Dr. Halley's Tables of Obfervations fufficiently fhew; for inflance; out of 302 perfons of 54 years of age; there remain, after 16 years (that is, of the age of 70) but 142 ; the decrements from year to year having been conftantly 10 ; and the fame thing happens in other intervals; and it is to be prefumed, that the like would happen in any other good Tables of Obfervations.

But, in order to fhew, in fome meafure, the ufe of the preceding Theorem, it is neceffary to add another Problem; which, though its Solution is to be met with in the firft edition of my book of Annuities on Lives, yet it is convenient to have it inferted here, on account of the connexion that the application of the preceding Problem has with it.

In the mean time, it will be proper to know, What part of the yearly rent fbould be paid to the beirs of the late poffefor of an Annuity, as may be exactly proportioned to the time elapfed between that of the laft payment, and the very moment of the life's expiring. To determine this, put A for the yearly rent; $\frac{1}{m}$ for the part of the year intercepted between the time of the laft payment, and the inftant of the life's failing; r the amount of $I l$. at the year's end: then will $\frac{\frac{1}{r^{m}}-1}{r-1} A$ be the fum to be paid.

PROBLEM II.

To find the Value of an Annuity for a limited interval of life, during which the decrements of life may be confidered as equal.

Solution.

Let a and b reprefent the number of people living in the beginning and end of the given interval of years.
s reprefent that interval.
P the Value of an Annuity certain for that interval.
2 the Value of an Annuity for life fuppofed to be neceffarily extinct in the time s; or (which is the fame thing) the Value of an Annuity for a life, of which the complement is s.
Then $2+\frac{b}{a} \times \overline{P-2}$ will exprefs the Value required.

Demonstration.

For, let the whole interval between a and b be filled up with arithmetical mean proportionals; therefore the number of penple living in the beginning and end of each year of t e given interval s wiil be reprefented by the following Series; viz.

$$
a \cdot \frac{s a-a+b}{5}, \frac{s a-2 a+2 b}{s} \cdot \frac{s a-2 n+2 b}{s} \cdot \frac{(a-4+4 b}{5} \cdot \mathcal{E} c, \text { to } b \text {. }
$$

Confequently, the Probabilities of the life's continuing during r, $2,3,4,5, \varepsilon_{c} c$. years will be expreffed by the Series,

$$
\frac{s a-a+b}{a} \cdot \frac{a-2+1 b}{s} \cdot \frac{s a-3+3 b}{s a} \cdot \frac{s a-4 a+4 b}{s a} \text {. Esc to } \frac{b}{a} \text {. }
$$

Wherefore, the Value of an Annuity of $I l$. granted for the time s, will be expreffed by the Series

$$
\frac{s a-1+b}{\operatorname{san}}+\frac{\operatorname{sa-2a+2b}}{\operatorname{san}^{2}}+\frac{\operatorname{sa-3}+3^{2}}{\operatorname{san}^{3}}+\frac{5 a-4 a+b}{\operatorname{san}^{4}}, \operatorname{Ve}^{3} c . \text { to }+\frac{b}{\sin ^{3}} ;
$$

this Series is diviable into two other Series's, viz.

$$
\begin{aligned}
& 1 / f \cdot \frac{s-1}{s r^{2}}+\frac{s-2}{s r^{2}}+\frac{s-3}{s r^{3}}+\frac{s-4}{s s^{4}}, \varepsilon^{2} c \text {. to }+\frac{s-s}{s r^{3}} . \\
& \text { 2d. } \frac{6}{a} \times \frac{1}{s^{n}}+\frac{2}{n^{2}}+\frac{2}{n^{3}}-\frac{4}{n^{4}}, \text { Efc. to } \frac{3}{s^{3}} \text {. }
\end{aligned}
$$

Now, fince the firft of thefe Series's begins with a Term whofe Numerator is $s-1$, and the fubfequent Numerators each decreafe by unity; it follows, that the laft Term will be $=0$; and confequently, that Series expreffes the Value of a life neceffarily to be extinct in the time s. The fum of which Series may be efteemed as a given quantity; and is what I have expreffed by the fymbol 2 in. Problem I.

The fecond Series is the difference between the two following Series's,
$\frac{b}{a^{2}} \times \frac{1}{r}+\frac{1}{1^{2}}+\frac{1}{r^{3}}+\frac{1}{2^{4}}+E C_{\text {. to } \frac{1}{1 s}}$.
$\frac{b}{a} x \frac{s-1}{s r}+\frac{-x}{s r^{2}}+\frac{s-3}{s s^{3}}+\frac{s-4}{s r^{4}} E c$. to $+\frac{s-s}{s s^{s}}$.
Where, neglecting the common multiplier $\frac{b}{a}$, the firf Series is the Value of an Annuity certain to continue s years; which every mathematician knows how to calculate, or is had from Tables already compofed for that purpofe: this Value is what I have called P; and the fecond Series is 2.

Therefore $2+\frac{b}{a} \times \overline{P-2}$ will be the Value of an Annuity on a life for the limited time. 2.E.D.

It is obvious, that the Series denoted by \mathscr{Q}^{2} muft of neceffity have one Term lefs than is the number of equal intervals contained in s; and therefore, if the whole extent of life, beginning from an age given, be divided into feveral intervals, each having its own particular uniform decrements, there will be, in each of thefe intervals, the defect of one payment; which to remedy, the Series 2 muft be calculated by Problem I.

Example.

To find the Value of an Annuity for an age of 54 , to continue 16 years, and no longer.
It is found, in Dr. Halley's Tables of Obfervations, that a is 302 , and b_{172} : now $n=s=16$; and, by the Tables of the Values of Annuities certain, $P=10.8377$; alfo (by Problem 1.) $2=\left(\frac{1}{r-1}-\right.$ $\frac{P}{\alpha n}=$ 6.1168. Hence it follows (by this Problem), that the Value of an Annuity for an age of 54 , to continue during the limited time of 16 years, fuppofing intereft at 5 per cent. per annum, will be worth $\left(2+\frac{b}{a} \times \overline{P-2}=\right) 8.3365$ years purchafe.

From Dr. Halley's Tables of Obfervations, we find, that from the age of 49 to 54 inclufive, the number of perfons, exitting at thofe feveral ages, are, $357,346,335,324,313,302$, which comprehends a fpace of five years; and, following the precepts before laid down, we fhall find, that an Annuity for a life of 49, to continue for the limited time of 5 years, intereft being at 5 per cent. per annum, is worth 4.0374 years purchafe.

$A P P B X D X I$.

And, in the fame manner, we fhall find, that the Value of an Annuity on a life, for the limited time comprehended between the ages of 42 and 49 , is worth 5.3492 years purchafe.

Now, if it were required to determine the Value of an Annuity on life, to continue from the age of 4^{2} to 70 , we muft proceed thus:

It has been proved, that an Annuity on life, reaching from the age of 54 to 70 , is worth 8.3365 years purchafe; but this Value, being eftimated from the age of 49 , ought to be diminifhed on two accounts: Firft, becaufe of the Probability of the life's reaching from 49 to 54 , which Probability is to be deduced from the Table of Obfervations, and is proportional to the number of people living at the end and beginning of that interval, which, in this cafe, will be found 302 and 357: The fecond diminution proceeds from a difcount that ought to be made, becaufe the Annuity, which reaches from 54 to 70 , is eftimated 5 years fooner, viz. from the age of 49 , and therefore that diminution ought to be expreffed by $\frac{1}{r^{5}}$; fo that the total diminution of the Annuity of 16 years will be expreffed by the fraction $\frac{302}{357^{5}}$, which will reduce it from 8.3365 years purchafe to $5 \cdot 5^{2} 59$; this being added to the Value of the Annuity to continue from 49 to 54 , viz. 4.0374 , will give 9.5633 , the Value of an Annuity to continue from the age of 49 to 70 . For the fame reafon, the Value 9.5633 , eftimated from the age of 42 , ought to be reduced, both upon account of the Probability of living from 42 to 49 , and of the difcount of money for 7 years, at 5 per cent. per annum, amounting together to 3.8554 , which will bring it down to 5.7079 ; to this adding the Value of an Annuity on a life to continue from the age of 42 to 49 , found before to be $5 \cdot 3492$, the fum will be 11.057 I years purchafe, the Value of an Annuity to continue from the age of 42 to 70 .

In the fame manner, for the laft 16 years of life, reaching from 70 to 86 , when properly difcounted, and alfo diminifhed upon theaccount of the Probability of living from 42 to 70 , the Value of thofe laft 16 years will be reduced to 0.8 ; this being added to11.057 I (the Value of an Annuity to continue from the age of 4.2 to 70 , found before), the fum will be 11.8571 years purchafe, the Value of an Annuity to continue from the age of 42 to 86 ; that is, the Value of an Annuity on a life of 42 ; which, in my Tables, is but 11.57, upon the fuppofition of an uniform decrement of life, from an. age given to the extremity of old-age, fuppofed at 86.

It is to be obferved, that the two diminutions, above-mentioned, are conformable to what I have faid in the Corollary to the fecond Problem of the firf edition, printed in the year 1724.

Thofe who have fufficient leifure and fkill to calculate the Value of joint Lives, whether taken two and two, or three and three, in the fame manner as I have done the firft Problem of this tract, will be greatly affifted by means of the two following Theorems:

If the ordinate of a curve be $\frac{z}{r^{2}}$; its area will be $\frac{1}{a^{2}}-\frac{1}{a^{2} r^{2}}-$ $\frac{z}{2 n^{2}}$.

If the ordinate of a curve be $\frac{z^{2}}{r^{2}}$; its area will be $\frac{2}{a^{3}}-\frac{2}{a^{3,2}}-$ $\frac{2 z}{a^{2} r^{2}}-\frac{2^{2}}{a r^{2}}$.

$A \quad P \quad P \quad E \quad N D I X$.

№. VII.
The Probabilities of buman Life, according to different Autbors.
Table I, by Dr. Halley.

Age	ge				Living.	Age	Living.			Age	Living.
	1000	16	622	31	523	46	387	61	232	76	8
2	2855	17	616	32	515	47	377	62	22.	7	68
3	379	18	610	33	507	48	367	63	212	78	5^{8}
4	4.760	19	604	34	494	+9	357	54	202	79*	* 49
	$5{ }^{5} 732$	-	598	135	$5{ }^{*} 490$	50	* 346	65		80	1
6	6710	21			48	51	335	66	8	31	4
	769	22	586	37	472	5	324	(6)	17^{2}	2	8
	8680	23	580	38	403	53	313	68	16	3	23
9	9670	2 A	574	39	454	54	302	09		84	9
10	66.		* 567	40	445	55	*292		14^{2}	*	
11	1653		560	4 I	43°	$\|56\|$	282		* 131		
12	2646		553	42	4.7	57	27		12 C		
	3 *640	28	546	43	* 417	58	26				
14	463	9	539	44	407	59	252		9		
15	562	30*									

Table II. by M. Kirfeboom.
 $\begin{array}{llllllll}A & P & P & E & N & D & I & X\end{array}$

Table III. by M. de Parcieux.

Table IV. by Meffieurs Smart and Simpfon.

Remarks.

$\begin{array}{llllllll}A & P & P & E & N & D & I & X\end{array}$

Remarks on the foregoing Tables.

The firft Table is that of Dr. Halley, compofed from the Bills of Mortality of the City of Breflare ; the beft, perhaps, as well as the firft of its kind; and which will always do honour to the judgment and fagacity of its excellent Author.

Next follows a Table of the ingenious Mr. Ker $\int f$ eboom, founded' chiefly upon Regifters of the Dutch Annuitants, carefully examined and compared, for more than a century backward. And Monfieur de Parcieux by a like ufe of the Litts of the French Tontines, or lons Annuities, has furnifhed us Table III; whofe numbers were likewife verified upon the Necrologies or mortuary Regifters of feveral religious houfes of both Sexes.

To thefe is added the Table of Meffieurs Smart and Simplon, adapted particularly'to the City of London; whofe inhabitants, for reafons. too well known, are fhorter lived than the reft of mankind.

Each of thefe Tables may have its particular ufe: The Second or Third in valuing the better fort of Lives, upon which one would chufe to hold an Annuity; the Fourth may ferve for Londsn, or for Lives fuch as thofe of its Inhabitants are fuppofed to be: while Dr. Halley's numbers, falling between the two Extremes, feem to approach nearer to the general courfe of nature. And in Cafes of combined Lives, two or more of the Tables may perhaps be ufefully employed.

Befides thefe, the celebrated Monfieur de Buffon t has lately given us a new Table, from the actual Oblervations of Monfieur dui Pré de S. Maur of the French Academy. This Gentleman, in order to frike a juft mean, takes three populous parifhes in the City of Paris, and fo many country Villages as furnifh him nearly an equal number of Lives: and his care and accuracy in that performance have been fuch as to merit the high approbation of the learned Editor. It was therefore propofed to add this Table to the reft; afier having purged its numbers of the inequalities that neceffarily happen in fortuitous. things, as well as of thofe arifing from the carelels manner in which Ages are given in to the parifh Clerks; by which the years that are multiples of 10 are generally overloaded.

But this having been done with all due care, and the whole reduced to Dr Halley's Denomination of 1000 Infants of a year old ; there refulted only a mutual confirmation of the two Tables; Mr. $d u$ Prés Table making the Lives fomewhat better as far as 39 years, and thence a fmall matter worfe than they are by Dr. Halley's.

We may therefore retain this laft as no bad ftandard for mankind in general; till a better Police, in this and other nations, fhall furnifh.

$34^{8} \quad A \cdot P \quad P \quad E \quad N D I X$.

the proper Data for correcting it, and for expreffing the Decrements of Life more accurately, and in larger numbers.

For which purpofe, the parifh Regifters ought to be kept in a better manner, according to one or other of the Forms that have been propofed by Authors. Or, if we fuppofe the numbers annually born to have been nearly the fame for an age paft, the thing may be done at once, by taking the numbers of the living, with their ages, throughout every Parihh in the Kingdom : as was in part ordered fome time ago by the Right Reverend the Bifhops: but their Order was not univerfally obeyed; for what reafon we pretend not to guefs. Certain it is, that a Cenfus of this kind once eftablifhed, and repeated at proper intervals, would furnifh to our Governours, and to ourfelves, much important inftruction of which we are now in a great meafure deftitute : Efpecially if the whole was diftributed into the proper Claffes of married and unmarried, induftrious and chargeable Poor, Artificers of every kind, Manufacturers, \&c. and if this was done in each County, City, and Borough, feparately; that particular ufeful conclufions might thence be readily deduced; as well as the general ftate of the Nation difcovered; and the Rate according to which buman Life is wafting from year to year. See, on this fubject, the judicious Obfervations of Mr. Corbyn Morris, addreffed to Thomas Potter Efq; in the year 175^{1}.

(2nen

[^0]: * This Preface was written in $1717 . \quad+$ Now Earl of Radior.

[^1]: * Guineas were then at $21^{\beta} \cdot 6 d$.

[^2]:

[^3]: * Of Combinations and Permutations, See Prob. xiv. \& feqq.

[^4]: + Namely, by calling the Ponte's two Cards two white Counters, drawn for alternately by A and B; and fuppofing all A 's Chances to belong to the Banker's right hand, and thofe of B to his left. And the like for the Cafes of the Ponte's Card being in the Stock 3 or 4 times.

[^5]: * Sce his two Letters to Mr. de Monmort, one dated at London, II Oct. 1712 , the other from Paris, 23 Fan. 1713, in the Appendix to the Analyfe des Feux de bazard, 2d Edit.

[^6]: * See, on the Subject of Annuities, Mathem. Repofitory, Vol. II. and III. by the ingenious Mr. Fames Dodjon, F. R. S.

